Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Gem5-X: a many-core heterogeneous simulation platform for architectural exploration and optimization

dc.contributor.authorQureshi, Yasir Mahmood
dc.contributor.authorSimon, William Andrew
dc.contributor.authorZapater, Marina
dc.contributor.authorOlcoz Herrero, Katzalin
dc.contributor.authorAtienza, David
dc.date.accessioned2023-06-16T14:16:49Z
dc.date.available2023-06-16T14:16:49Z
dc.date.issued2021-12
dc.description©2020 Association for Computing Machinery This work has been partially supported by the ERC Consolidator Grant COMPUSAPIEN (GA No. 725657), the EC H2020 WiPLASH (GA No. 863337), the EC H2020 RECIPE (GA No. 801137), the Spanish CM (S2018/TCS-4423), the EU FEDER, and the Spanish MINECO (GA No. RTI2018-093684-B-I00).
dc.description.abstractThe increasing adoption of smart systems in our daily life has led to the development of new applications with varying performance and energy constraints, and suitable computing architectures need to be developed for these new applications. In this article, we present gem5-X, a system-level simulation framework, based on gem-5, for architectural exploration of heterogeneous many-core systems. To demonstrate the capabilities of gem5-X, real-time video analytics is used as a case-study. It is composed of two kernels, namely, video encoding and image classification using convolutional neural networks (CNNs). First, we explore through gem5-X the benefits of latest 3D high bandwidth memory (HBM2) in different architectural configurations. Then, using a two-step exploration methodology, we develop a new optimized clustered-heterogeneous architecture with HBM2 in gem5-X for video analytics application. In this proposed clustered-heterogeneous architecture, ARMv8 in-order cluster with in-cache computing engine executes the video encoding kernel, giving 20% performance and 54% energy benefits compared to baseline ARM in-order and Out-of-Order systems, respectively. Furthermore, thanks to gem5-X, we conclude that ARM Out-of-Order clusters with HBM2 are the best choice to run visual recognition using CNNs, as they outperform DDR4-based system by up to 30% both in terms of performance and energy savings.
dc.description.departmentSección Deptal. de Arquitectura de Computadores y Automática (Físicas)
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipUnión Europea. H2020
dc.description.sponsorshipMinisterio de Ciencia e Innovación (MICINN) / FEDER
dc.description.sponsorshipComunidad de Madrid
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/68402
dc.identifier.doi10.1145/3461662
dc.identifier.issn1544-3566
dc.identifier.officialurlhttp://dx.doi.org/10.1145/3461662
dc.identifier.relatedurlhttps://dl.acm.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/4501
dc.issue.number4
dc.journal.titleACM transactions on architecture and code optimization
dc.language.isoeng
dc.publisherAssociation for Computing Machinery
dc.relation.projectIDCOMPUSAPIEN (725657); RECIPE (801137); WiPLASH (863337)
dc.relation.projectIDRTI2018-093684-B-I00
dc.relation.projectIDCABAHLA-CM (S2018/TCS-4423)
dc.rightsAtribución 3.0 España
dc.rights.accessRightsopen access
dc.rights.urihttps://creativecommons.org/licenses/by/3.0/es/
dc.subject.cdu004.8
dc.subject.keywordPower
dc.subject.keywordMany-core
dc.subject.keywordArchitectural exploration
dc.subject.keywordGem5
dc.subject.keywordIn-cache
dc.subject.keywordHBM
dc.subject.keywordHeterogeneous architectures
dc.subject.keywordCluster
dc.subject.ucmInteligencia artificial (Informática)
dc.subject.unesco1203.04 Inteligencia Artificial
dc.titleGem5-X: a many-core heterogeneous simulation platform for architectural exploration and optimization
dc.typejournal article
dc.volume.number18
dspace.entity.typePublication
relation.isAuthorOfPublication8cfc18ec-4816-404d-982d-21dc07318c07
relation.isAuthorOfPublication.latestForDiscovery8cfc18ec-4816-404d-982d-21dc07318c07

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
olcoz26 libre+CC.pdf
Size:
3.79 MB
Format:
Adobe Portable Document Format

Collections