Axiomatization of the degree of Fitzpatrick, Pejsachowicz and Rabier
dc.contributor.author | López Gómez, Julián | |
dc.contributor.author | Sampedro Pascual, Juan Carlos | |
dc.date.accessioned | 2023-06-22T10:40:18Z | |
dc.date.available | 2023-06-22T10:40:18Z | |
dc.date.issued | 2022-12-21 | |
dc.description | CRUE-CSIC (Acuerdos Transformativos 2021) | |
dc.description.abstract | In this paper, we prove an analogue of the uniqueness theorems of Führer [15] and Amann and Weiss [1] to cover the degree of Fredholm operators of index zero constructed by Fitzpatrick, Pejsachowicz and Rabier [13], whose range of applicability is substantially wider than for the most classical degrees of Brouwer [5] and Leray–Schauder [22]. A crucial step towards the axiomatization of this degree is provided by the generalized algebraic multiplicity of Esquinas and López-Gómez [8, 9, 25], χ, and the axiomatization theorem of Mora-Corral [28, 32]. The latest result facilitates the axiomatization of the parity of Fitzpatrick and Pejsachowicz [12], σ(⋅,[a,b]), which provides the key step for establishing the uniqueness of the degree for Fredholm maps. | |
dc.description.department | Depto. de Análisis Matemático y Matemática Aplicada | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/70067 | |
dc.identifier.doi | 10.1007/s11784-021-00916-7 | |
dc.identifier.issn | 1661-7738 | |
dc.identifier.officialurl | https://doi.org/10.1007/s11784-021-00916-7 | |
dc.identifier.relatedurl | https://link.springer.com/article/10.1007/s11784-021-00916-7 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/71279 | |
dc.issue.number | 1 | |
dc.journal.title | Journal of Fixed Point Theory and Applications | |
dc.language.iso | eng | |
dc.publisher | Springer Nature | |
dc.rights | Atribución 3.0 España | |
dc.rights.accessRights | open access | |
dc.rights.uri | https://creativecommons.org/licenses/by/3.0/es/ | |
dc.subject.keyword | Degree for Fredholm maps | |
dc.subject.keyword | Uniqueness | |
dc.subject.keyword | Axiomatization | |
dc.subject.keyword | Normalization | |
dc.subject.keyword | generalized additivity | |
dc.subject.keyword | Homotopy invariance | |
dc.subject.keyword | Generalized algebraic multiplicity | |
dc.subject.keyword | Parity | |
dc.subject.keyword | Orientability | |
dc.subject.ucm | Álgebra | |
dc.subject.ucm | Lógica simbólica y matemática (Matemáticas) | |
dc.subject.unesco | 1201 Álgebra | |
dc.subject.unesco | 1102.14 Lógica Simbólica | |
dc.title | Axiomatization of the degree of Fitzpatrick, Pejsachowicz and Rabier | |
dc.type | journal article | |
dc.volume.number | 24 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 27effbc8-f76e-4c18-8514-82cf8fe8ccbf | |
relation.isAuthorOfPublication | 5110d385-d47f-4760-a4df-4efc25bdf631 | |
relation.isAuthorOfPublication.latestForDiscovery | 27effbc8-f76e-4c18-8514-82cf8fe8ccbf |
Download
Original bundle
1 - 1 of 1
Loading...
- Name:
- Axiomatization_of_the_degree_of_Fitzpatrick_Pejsac.pdf
- Size:
- 526.58 KB
- Format:
- Adobe Portable Document Format