Moving frames in Lorentzian manifolds R1,3 and their symmetry generators
Loading...
Download
Official URL
Full text at PDC
Publication date
2025
Defense date
23/05/2025
Authors
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Universidad Complutense de Madrid
Citation
Abstract
La geometrización es una forma natural de resolver algunos problemas de física, y podría ser clave para explicar las inconsistencias observadas recientemente en la dinámica espacio-temporal, tales como la llamada "tensión de Hubble" y las "galaxias tempranas imposibles". Para abordar el problema, esta Tesis propone una técnica de incrustación dinámica que construye variedades Lorentzianas R1,3 ⊂ R1,4flat (espacio-tiempos) de manera natural, usando marcos de referencia con movimiento lineal y secciones espaciales homogéneas de curvatura espacial positiva (k > 0), nula (k = 0) o negativa (k < 0). La consistencia del enfoque se probó para tres escalas: (1) la cuatro-variedad Lorentziana incrustada, (2) objetos a gran escala y (3) campos de partículas...
Geometrization is a natural way to solve some physical issues, and could be key to explaining recent problems observed on spacetime dynamics, such as the so-called ‘Hubble tension’ and ‘impossible early galaxies’. To face this challenge, the present Thesis proposes a dynamical embedding technique that builds Lorentzian manifolds R1,3 ⊂ R1,4 flat (spacetimes) in a natural manner by using linearly moving frames and homogeneous spatial sections of positive (k > 0), null (k = 0) or negative (k < 0) curvature. Self-consistency of the approach was proved at three scales: (1) The embedded Lorentzian four-manifold, (2) large-scale objects and (3) particle fields...
Geometrization is a natural way to solve some physical issues, and could be key to explaining recent problems observed on spacetime dynamics, such as the so-called ‘Hubble tension’ and ‘impossible early galaxies’. To face this challenge, the present Thesis proposes a dynamical embedding technique that builds Lorentzian manifolds R1,3 ⊂ R1,4 flat (spacetimes) in a natural manner by using linearly moving frames and homogeneous spatial sections of positive (k > 0), null (k = 0) or negative (k < 0) curvature. Self-consistency of the approach was proved at three scales: (1) The embedded Lorentzian four-manifold, (2) large-scale objects and (3) particle fields...
Description
Tesis inédita de la Universidad Complutense de Madrid, Facultad de Ciencias Matemáticas, leída el 23/05/2024