Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Stopping a Viscous Fluid by a Feedback Dissipative Field: Thermal Effects without Phase Changing

dc.book.titleTrends in Partial Differential Equations of Mathematical Physics
dc.contributor.authorAntontsev, S.N.
dc.contributor.authorDíaz Díaz, Jesús Ildefonso
dc.contributor.authorOliveira, H.B. de
dc.date.accessioned2023-06-20T13:42:04Z
dc.date.available2023-06-20T13:42:04Z
dc.date.issued2005
dc.description.abstractWe show how the action on two simultaneous effects (a suitable coupling about velocity and temperature and a low range of temperature but upper that the phase changing one) may be responsible of stopping a viscous fluid without any changing phase. Our model involves a system, on an unbounded pipe, given by the planar stationary Navier-Stokes equation perturbed with a sublinear term f(x, θ, u) coupled with a stationary (and possibly nonlinear) advection diffusion equation for the temperature θ.After proving some results on the existence and uniqueness of weak solutions we apply an energy method to show that the velocity u vanishes for x large enough.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/30728
dc.identifier.isbn3-7643-7165-X
dc.identifier.officialurlhttp://download.springer.com/static/pdf/924/
dc.identifier.relatedurlhttp://link.springer.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/53434
dc.issue.number61
dc.language.isoeng
dc.page.final14
dc.page.initial1
dc.page.total282
dc.publication.placeBasel
dc.publisherBirkhäuser
dc.relation.ispartofseriesProgress in Nonlinear Differential Equations and Their Applications
dc.rights.accessRightsopen access
dc.subject.cdu53
dc.subject.keywordNon-Newtonian fluids
dc.subject.keywordnonlinear thermal diffusion equations
dc.subject.keywordfeedback dissipative field
dc.subject.keywordenergy method
dc.subject.keywordheat and mass transfer
dc.subject.keywordlocalization effect.
dc.subject.ucmFísica (Física)
dc.subject.unesco22 Física
dc.titleStopping a Viscous Fluid by a Feedback Dissipative Field: Thermal Effects without Phase Changing
dc.typebook part
dcterms.referencesS.N. Antontsev, J.I. Díaz, H.B. de Oliveira. Stopping a viscous fluid by a feedback dissipative external field: I. The stationary Stokes equations. Book of abstracts of NSEC8, Euler International Mathematical Institute, St. Petersburg, 2002. S.N. Antontsev, J.I. Díaz, H.B. de Oliveira. On the confinement of a viscous fluid by means of a feedback external field. C.R. Mécanique 330 (2002), 797–802. S.N. Antontsev, J.I. Díaz, H.B. de Oliveira. Stopping a viscous fluid by a feedback dissipative field: I. The stationary Stokes problem. To appear in J. Math. Fluid Mech. S.N. Antontsev, J.I. Díaz, H.B. de Oliveira. Stopping a viscous fluid by a feedback dissipative field: I. The stationary Navier-Stokes problem. To appear in Rend.Lincei Mat. Appl. S.N. Antontsev, J.I. Díaz, S.I. Shmarev. Energy Methods for Free Boundary Problems:Applications to Non-linear PDEs and Fluid Mechanics. Progress in Nonlinear Differential Equations and Their Applications, Vol. 48, Birkhäuser, Boston, 2002. J.R. Canon, E. DiBenedetto, G.H. Knightly. The bidimensional Stefan problem with convection: the time-dependent case. Comm. Partial Differential Equations, 8 (1983),1549–1604. J. Carrillo, M. Chipot, On some nonlinear elliptic equations involving derivatives of the nonlinearity, Proc. Roy. Soc. Edinburgh Sect. A 100 (3–4) (1985), 281–294. E. DiBenedetto, M. O’Leary. Three-dimensional conduction-convection problems with change of phase. Arch. Rational Mech. Anal. 123 (1993), 99–117. G.P. Galdi. An Introduction to the Mathematical Theory of the Navier-Stokes Equations:Nonlinear Steady Problems. Springer-Verlag, New York, 1994. D. Gilbarg, N.S. Trudinger. Elliptic Partial Differential Equations of Second Order. Springer-Verlag, Berlin Heidelberg, 1998. O.A. Ladyzhenskaya, N.N. Ural’tseva. Linear and Quasilinear Elliptic Equations. Academic Press, New York, 1968. O.A. Ladyzhenskaya. The Mathematical Theory of Viscous Incompressible Fluids. Gordon and Breach Science Publishers Inc., New York, 1969. V.A. Solonnikov. On the solvability of boundary and initial boundary value problems for the Navier-Stokes systems in domains with noncompact boundaries. Pacific J. Math. 93 (2) (1981), 443–458. X. Xu, M. Shillor. The Stefan problem with convection and Joule’s heating. Adv. Differential Equations 2 (1997), 667–691.
dspace.entity.typePublication
relation.isAuthorOfPublication34ef57af-1f9d-4cf3-85a8-6a4171b23557
relation.isAuthorOfPublication.latestForDiscovery34ef57af-1f9d-4cf3-85a8-6a4171b23557

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
178.pdf
Size:
272.04 KB
Format:
Adobe Portable Document Format