Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

On the polytope of non-additive measures

Loading...
Thumbnail Image

Full text at PDC

Publication date

2008

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier Science
Citations
Google Scholar

Citation

Abstract

In this paper we deal with the problem of studying the structure of the polytope of non-additive measures for finite referential sets. We give a necessary and sufficient condition for two extreme points of this polytope to be adjacent. We also show that it is possible to find out in polynomial time whether two vertices are adjacent. These results can be extended to the polytope given by the convex hull of monotone Boolean functions. We also give some results about the facets and edges of the polytope of non-additive measures; we prove that the diameter of the polytope is 3 for referentials of three elements or more. Finally, we show that the polytope is combinatorial and study the corresponding properties; more concretely, we show that the graph of non-additive measures is Hamilton connected if the cardinality of the referential set is not 2.

Research Projects

Organizational Units

Journal Issue

Description

UCM subjects

Unesco subjects

Keywords

Collections