Development and validation of a Monte Carlo model of a mobile accelerator for intraoperative radiation therapy

dc.contributor.authorAyala, Rafael
dc.contributor.authorSoza, Álvaro
dc.contributor.authorGarcía, María Jesús
dc.contributor.authorGarcía, Rocío
dc.contributor.authorUdías Moinelo, José Manuel
dc.contributor.authorIbáñez García, Paula Beatriz
dc.date.accessioned2025-09-02T11:32:47Z
dc.date.available2025-09-02T11:32:47Z
dc.date.issued2025-08
dc.description.abstractBackground Intraoperative electron radiation therapy (IOERT) relies on accurate and precise dose delivery to the tumor or tumor bed using mobile accelerators and interchangeable applicators, while critical organs are typically displaced or shielded during surgery. Treatment planning and linac commissioning are often based on water measurements, Monte Carlo (MC) simulations of the accelerator head and applicator system provide detailed insights into dose distributions and beam characteristics, offering additional support for clinical evaluation. Purpose This study develops an MC model of the Liac HWL mobile accelerator using a hypothetical linac head geometry, due to the limited availability of detailed information on its internal components resulting from manufacturer disclosure policies. The model is optimized by adjusting three geometric parameters of the linac head and the initial beam energy spectrum to match experimental data. Additionally, it provides a set of Phase Space Files (PSFs) to support research and clinical applications. Methods The MC code PENELOPE, integrated with the penEasy framework, was used to simulate the Liac HWL. The hypothetical head geometry was defined by parameters such as the inner diameter of the head, the thickness of the scattering foil, and the thickness of the exit window. Output factors (OFs), percentage depth doses (PDDs), and off‐axis ratios (OARs) were calculated in a virtual water phantom for different applicator sizes, bevel angles, and energies. Gamma analysis was employed to validate the model by comparing calculated and measured dose distributions. PSFs were made available in the IAEA PHSP format at four energies (6, 8, 10, and 12 MeV). Results The model matched measured OFs within 2.5%. PDDs and OARs met the gamma analysis criteria (2% dose difference and 1 mm distance‐to‐agreement) in more than 93% of the studied cases, with the worst‐case scenario occurring for the smallest applicator (3 cm diameter) with a 45° bevel angle at 6 MeV, resulting in OAR gamma passing rates of 85.7% at and 86.1% at . Conclusions Despite the use of a hypothetical geometry, the model offers accurate dosimetric data and practical guidance for IOERT commissioning and treatment planning. It highlights potential dosimetric issues, particularly the lack of homogeneity in OARs for large‐diameter applicators, and allows fine‐tuning based on real‐world data. Additionally, the PSFs generated in this study provide a reliable resource for simulating IORT dose distributions and analyzing the characteristics of IOERT beams.
dc.description.departmentDepto. de Estructura de la Materia, Física Térmica y Electrónica
dc.description.facultyFac. de Ciencias Físicas
dc.description.facultyInstituto de Física de Partículas y del Cosmos (IPARCOS)
dc.description.refereedTRUE
dc.description.sponsorshipAgencia Estatal de Investigación (España)
dc.description.sponsorshipEuropean Commission
dc.description.sponsorshipComunidad de Madrid
dc.description.statuspub
dc.identifier.citationAyala R, Soza Á, García MJ, García R, Udías JM, Ibáñez P. Development and validation of a Monte Carlo model of a mobile accelerator for intraoperative radiation therapy. Med Phys. 2025; 52:e18040. https://doi.org/10.1002/mp.18040
dc.identifier.doi10.1002/mp.18040
dc.identifier.essn2473-4209
dc.identifier.issn0094-2405
dc.identifier.officialurlhttps//doi.org/10.1002/mp.18040
dc.identifier.relatedurlhttps://aapm.onlinelibrary.wiley.com/doi/full/10.1002/mp.18040
dc.identifier.urihttps://hdl.handle.net/20.500.14352/123620
dc.issue.number8
dc.journal.titleMedical Physics
dc.language.isoeng
dc.page.final18040-22
dc.page.initial18040-1
dc.publisherWiley
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2022-137114OA-I00/ES/EXPLORACION IN VIVO DE LA RESPUESTA TISULAR A LA RADIACION/
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PLEC2022-009256/ES/Comprendiendo la radioterapia flash con dispositivos de tejido-en-chip y resonancia magnética mejorada con hiperpolarización: FLASHOnChip/
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica, Técnica y de Innovación 2021-2023/TED2021-130592B-I00
dc.relation.projectIDS2022/BMD7434/ASAP
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/101099096
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationalen
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.cdu539.1
dc.subject.cdu615.849
dc.subject.cdu616-073.75
dc.subject.keywordIORT
dc.subject.keywordIOERT
dc.subject.keywordLiac HWL
dc.subject.keywordMonte Carlo
dc.subject.ucmFísica nuclear
dc.subject.ucmDiagnóstico por imagen y medicina nuclear
dc.subject.unesco3201.11 Radiología
dc.titleDevelopment and validation of a Monte Carlo model of a mobile accelerator for intraoperative radiation therapy
dc.typejournal article
dc.type.hasVersionVoR
dc.volume.number52
dspace.entity.typePublication
relation.isAuthorOfPublication3dc23e23-6e7e-47dd-bd61-8b6b7a1ad75f
relation.isAuthorOfPublication3e87aa6b-a8b0-482e-99ba-f8afc04e5340
relation.isAuthorOfPublication.latestForDiscovery3dc23e23-6e7e-47dd-bd61-8b6b7a1ad75f

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Medical Physics - 2025 - Ayala
Size:
3.87 MB
Format:
Adobe Portable Document Format

Collections