Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Surface wind speed reconstruction from synoptic pressure fields: machine learning versus weather regimes classification techniques

dc.contributor.authorSaavedra-Moreno, Beatriz
dc.contributor.authorIglesia, Alejandro de la
dc.contributor.authorMagdalena-Saiz, Javier
dc.contributor.authorCarro-Calvo, Leopoldo
dc.contributor.authorDurán Montejano, Luis
dc.contributor.authorSalcedo-Sanz, Sancho
dc.date.accessioned2024-01-22T12:02:08Z
dc.date.available2024-01-22T12:02:08Z
dc.date.issued2014
dc.description.abstractThis paper tackles a problem of surface wind speed reconstruction based on synoptic-scale meteorological fields. Specifically, two different approaches are discussed and compared: a pure Machine Learning method, formed by a Support Vector Regression and a genetic algorithm that only considers synoptic pressure as input variable, and a Weather Regimes Classification Technique, based on a k-means clustering of the main three principal components of the geopotential height field and a simple, but efficient, linear regression between the surface pressure gradient and the observed surface wind. Both algorithms are shown to be accurate enough for wind speed reconstruction at medium latitude regions, even when there are only a few years of observations. These methodologies can also be used for filling gaps in wind speed series and, with some modifications and further research, they could be used for wind speed forecasting. The algorithms proposed are fully described and compared in this paper, and their performance has been comparatively evaluated in several real problems of wind speed reconstruction at three sites (Cabauw (The Netherlands), Capel (Wales, UK) and Kaegnes (Denmark)), obtaining excellent results in terms of wind speed reconstruction with moderate complexity in data processing and algorithms. Copyright (c) 2014 John Wiley & Sons, Ltd.eng
dc.description.departmentDepto. de Física de la Tierra y Astrofísica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Ciencia e Innovación (España)
dc.description.sponsorshipSolute Ingenieros
dc.description.statuspub
dc.identifier.citationSaavedra-Moreno, B., de la Iglesia, A., Magdalena-Saiz, J., Carro-Calvo, L., Durán, L., and Salcedo-Sanz, S. (2015) Surface wind speed reconstruction from synoptic pressure fields: machine learning versus weather regimes classification techniques. Wind Energ., 18: 1531–1544. doi: 10.1002/we.1774.
dc.identifier.doi10.1002/we.1774
dc.identifier.essn1099-1824
dc.identifier.issn1095-4244
dc.identifier.officialurlhttps://doi.org/10.1002/we.1774
dc.identifier.urihttps://hdl.handle.net/20.500.14352/94344
dc.issue.number9
dc.journal.titleWind Energy
dc.language.isoeng
dc.page.final1544
dc.page.initial1531
dc.publisherWiley
dc.relation.projectIDinfo:eu-repo/grantAgreement/MICINN/ECO2010-22065-C03-02
dc.rights.accessRightsrestricted access
dc.subject.cdu551.5
dc.subject.keywordWind speed reconstruction
dc.subject.keywordSynoptic pressure
dc.subject.keywordRegression techniques
dc.subject.keywordMachine learning
dc.subject.keywordWeather regimes
dc.subject.ucmMeteorología (Física)
dc.subject.unesco2509 Meteorología
dc.titleSurface wind speed reconstruction from synoptic pressure fields: machine learning versus weather regimes classification techniques
dc.typejournal article
dc.type.hasVersionVoR
dc.volume.number18
dspace.entity.typePublication
relation.isAuthorOfPublicationae257451-bc39-46ec-843e-420a115337d2
relation.isAuthorOfPublication.latestForDiscoveryae257451-bc39-46ec-843e-420a115337d2

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Surface_wind_speed_reconstruction.pdf
Size:
1.21 MB
Format:
Adobe Portable Document Format

Collections