Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Stationary axisymmetric SU(2) Einstein-Yang-Mills fields with restricted circularity conditions are Abelian

dc.contributor.authorChinea Trujillo, Francisco Javier
dc.contributor.authorNavarro Lerida, Francisco
dc.date.accessioned2023-06-20T19:15:12Z
dc.date.available2023-06-20T19:15:12Z
dc.date.issued2002-03-15
dc.description© 2002 The American Physical Society. The present work has been supported in part by DGICYT Project PB98-0772; F.N.L. is supported by Ministerio de Educación (Spain). The authors wish to thank L. Fernández Jambrina, L. M. González-Romero, and M. J. Pareja for discussions.
dc.description.abstractIn this paper we prove that in a stationary axisymmetric SU(2) Einstein-Yang-Mills theory the most reasonable circularity conditions that can be considered for the Yang-Mills fields imply in fact that the field is of embedded Abelian type, or else that the metric is not asymptotically flat.
dc.description.departmentDepto. de Física Teórica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipDGICYT
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/28863
dc.identifier.doi10.1103/PhysRevD.65.064010
dc.identifier.issn0556-2821
dc.identifier.officialurlhttp://dx.doi.org/10.1103/PhysRevD.65.064010
dc.identifier.relatedurlhttp://journals.aps.org
dc.identifier.relatedurlhttp://arxiv.org/pdf/gr-qc/0201082v1.pdf
dc.identifier.urihttps://hdl.handle.net/20.500.14352/59444
dc.issue.number6
dc.journal.titlePhysical review D
dc.language.isoeng
dc.publisherAmer Physical Soc
dc.relation.projectIDPB98-0772
dc.rights.accessRightsopen access
dc.subject.cdu51-73
dc.subject.ucmFísica matemática
dc.titleStationary axisymmetric SU(2) Einstein-Yang-Mills fields with restricted circularity conditions are Abelian
dc.typejournal article
dc.volume.number65
dcterms.references1. R. Bartnik and J. McKinnon, Phys. Rev. Lett. 61, 141 (1988). 2. M.S. Volkov and D.V. Gal’tsov, Phys. Rep. 319, 1 (1999). 3. N.S. Manton, Nucl. Phys. B135, 319 (1978). 4. C. Rebbi and P. Rossi, Phys. Rev. D 22, 2010 (1980). 5. W. Kundt and M. Tru¨mper, Ann. Phys. (Leipzig)192, 414 (1966). 6. B. Carter, J. Math. Phys. 10, 70 (1969). 7. T. Lewis, Proc. R. Soc. London A136, 176 (1932). 8. A. Papapetrou, Ann. Inst. Henri Poincaré, Sect. A 4, 83 (1966). 9. M. Heusler and N. Straumann, Class. Quantum Grav. 10, 1299 (1993). 10. M. Heusler, Black Hole Uniqueness Theorems (Cambridge University Press, Cambridge, England, 1996). 11. P.G. Bergmann and F.J. Flaherty, J. Math. Phys. 19, 212 (1978). 12. P. Forgács and N.S. Manton, Commun. Math. Phys. 72, 15 (1980).
dspace.entity.typePublication
relation.isAuthorOfPublicatione4399503-cd94-463f-9f57-413f91e12fc8
relation.isAuthorOfPublication48bd59fc-6ed5-48f0-a1f9-031606622729
relation.isAuthorOfPublication.latestForDiscoverye4399503-cd94-463f-9f57-413f91e12fc8

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Chinea01libre.pdf
Size:
57.83 KB
Format:
Adobe Portable Document Format

Collections