Stationary axisymmetric SU(2) Einstein-Yang-Mills fields with restricted circularity conditions are Abelian
dc.contributor.author | Chinea Trujillo, Francisco Javier | |
dc.contributor.author | Navarro Lerida, Francisco | |
dc.date.accessioned | 2023-06-20T19:15:12Z | |
dc.date.available | 2023-06-20T19:15:12Z | |
dc.date.issued | 2002-03-15 | |
dc.description | © 2002 The American Physical Society. The present work has been supported in part by DGICYT Project PB98-0772; F.N.L. is supported by Ministerio de Educación (Spain). The authors wish to thank L. Fernández Jambrina, L. M. González-Romero, and M. J. Pareja for discussions. | |
dc.description.abstract | In this paper we prove that in a stationary axisymmetric SU(2) Einstein-Yang-Mills theory the most reasonable circularity conditions that can be considered for the Yang-Mills fields imply in fact that the field is of embedded Abelian type, or else that the metric is not asymptotically flat. | |
dc.description.department | Depto. de Física Teórica | |
dc.description.faculty | Fac. de Ciencias Físicas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | DGICYT | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/28863 | |
dc.identifier.doi | 10.1103/PhysRevD.65.064010 | |
dc.identifier.issn | 0556-2821 | |
dc.identifier.officialurl | http://dx.doi.org/10.1103/PhysRevD.65.064010 | |
dc.identifier.relatedurl | http://journals.aps.org | |
dc.identifier.relatedurl | http://arxiv.org/pdf/gr-qc/0201082v1.pdf | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/59444 | |
dc.issue.number | 6 | |
dc.journal.title | Physical review D | |
dc.language.iso | eng | |
dc.publisher | Amer Physical Soc | |
dc.relation.projectID | PB98-0772 | |
dc.rights.accessRights | open access | |
dc.subject.cdu | 51-73 | |
dc.subject.ucm | Física matemática | |
dc.title | Stationary axisymmetric SU(2) Einstein-Yang-Mills fields with restricted circularity conditions are Abelian | |
dc.type | journal article | |
dc.volume.number | 65 | |
dcterms.references | 1. R. Bartnik and J. McKinnon, Phys. Rev. Lett. 61, 141 (1988). 2. M.S. Volkov and D.V. Gal’tsov, Phys. Rep. 319, 1 (1999). 3. N.S. Manton, Nucl. Phys. B135, 319 (1978). 4. C. Rebbi and P. Rossi, Phys. Rev. D 22, 2010 (1980). 5. W. Kundt and M. Tru¨mper, Ann. Phys. (Leipzig)192, 414 (1966). 6. B. Carter, J. Math. Phys. 10, 70 (1969). 7. T. Lewis, Proc. R. Soc. London A136, 176 (1932). 8. A. Papapetrou, Ann. Inst. Henri Poincaré, Sect. A 4, 83 (1966). 9. M. Heusler and N. Straumann, Class. Quantum Grav. 10, 1299 (1993). 10. M. Heusler, Black Hole Uniqueness Theorems (Cambridge University Press, Cambridge, England, 1996). 11. P.G. Bergmann and F.J. Flaherty, J. Math. Phys. 19, 212 (1978). 12. P. Forgács and N.S. Manton, Commun. Math. Phys. 72, 15 (1980). | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | e4399503-cd94-463f-9f57-413f91e12fc8 | |
relation.isAuthorOfPublication | 48bd59fc-6ed5-48f0-a1f9-031606622729 | |
relation.isAuthorOfPublication.latestForDiscovery | e4399503-cd94-463f-9f57-413f91e12fc8 |
Download
Original bundle
1 - 1 of 1