Intranasal Immunotherapy Is More Effective Than Intradermal Immunotherapy for the Induction of Airway Allergen Tolerance in Th2-Sensitized Mice
Loading...
Official URL
Full text at PDC
Publication date
2019
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
The American Association of Immunologists, Inc.,
Citation
Takabayashi K, Libet L, Chisholm D, Zubeldia J, Horner AA. Intranasal immunotherapy is more effective than intradermal immunotherapy for the induction of airway allergen tolerance in Th2-sensitized mice. J Immunol. 2003 Apr 1;170(7):3898-905. doi: 10.4049/jimmunol.170.7.3898. PMID: 12646659.
Abstract
Immunotherapy (IT) by injection more readily induces clinical tolerance to stinging insects than to respiratory allergens. However, while systemic immunization induces adaptive responses systemically, the induction of mucosal immunity generally requires local Ag exposure. Taken together, these observations suggest that the poor success rate of systemic IT for asthma could be a consequence of inadequate immune modulation in the airways. In support of this position, investigations presented in this report demonstrate that allergen IT more effectively induces airway allergen tolerance in Th2-sensitized mice, when delivered by the intranasal (i.n.) vs the intradermal (i.d.) route. Moreover, compared with native allergen, allergen immunostimulatory sequence oligodeoxynucleotide conjugate proved to be a more effective i.n. IT reagent for protecting allergic mice from airway hypersensitivity responses. Furthermore, for both native allergen and allergen immunostimulatory sequence oligodeoxynucleotide conjugate, i.n. and i.d. IT delivery were similarly effective in modulating systemic immune profiles in Th2-sensitized mice, while only i.n. IT had significant immunomodulatory activity on B and T cell responses in the airways. The present investigations may be the first to suggest that i.n. IT is more effective than i.d. IT for the treatment of asthma. Furthermore, our results suggest that modulating airway rather than systemic immunity may be the more important therapeutic target for the induction of clinical tolerance to respiratory allergens.