Diffeomorphisms between spheres and hyperplanes in infinite-dimensional Banach spaces
dc.contributor.author | Azagra Rueda, Daniel | |
dc.date.accessioned | 2023-06-20T16:47:25Z | |
dc.date.available | 2023-06-20T16:47:25Z | |
dc.date.issued | 1997 | |
dc.description.abstract | We prove that for every infinite-dimensional Banach space X with a Frechet differentiable norm, the sphere S-X is diffeomorphic to each closed hyperplane in X. We also prove that every infinite-dimensional Banach space Y having a (not necessarily equivalent) C-p norm (with p is an element of N boolean OR {infinity}) is C-p diffeomorphic to Y \ {0}. | |
dc.description.department | Depto. de Análisis Matemático y Matemática Aplicada | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/12280 | |
dc.identifier.issn | 0039-3223 | |
dc.identifier.officialurl | http://journals.impan.gov.pl/sm/ | |
dc.identifier.relatedurl | http://matwbn.icm.edu.pl/spis.php?wyd=2 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/57010 | |
dc.issue.number | 2 | |
dc.journal.title | Studia Mathematica | |
dc.language.iso | eng | |
dc.page.final | 186 | |
dc.page.initial | 179 | |
dc.publisher | Polish Acad Sciencies Inst Mathematics | |
dc.rights.accessRights | open access | |
dc.subject.cdu | 517.986 | |
dc.subject.keyword | Infinite-dimensional Banach space | |
dc.subject.keyword | Unit sphere | |
dc.subject.keyword | Hyperplane | |
dc.subject.keyword | Diffeomorphism | |
dc.subject.ucm | Funciones (Matemáticas) | |
dc.subject.unesco | 1202 Análisis y Análisis Funcional | |
dc.title | Diffeomorphisms between spheres and hyperplanes in infinite-dimensional Banach spaces | |
dc.type | journal article | |
dc.volume.number | 125 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 6696556b-dc2e-4272-8f5f-fa6a7a2f5344 | |
relation.isAuthorOfPublication.latestForDiscovery | 6696556b-dc2e-4272-8f5f-fa6a7a2f5344 |
Download
Original bundle
1 - 1 of 1