Synthesis and characterization of complex partially coherent beams

dc.contributor.authorAlieva Krasheninnikova, Tatiana
dc.contributor.authorCámara, Alejandro
dc.contributor.authorRodrigo Martín-Romo, José Augusto
dc.date.accessioned2023-06-18T06:45:20Z
dc.date.available2023-06-18T06:45:20Z
dc.date.issued2015-03-13
dc.description© 2015 SPIE. Spanish Ministerio de Economía y Competitividad is acknowledged for funding the project TEC2011-23629.
dc.description.abstractPartially coherent light provides attractive benefits for different applications in microscopy, astronomy, telecommunications, optical lithography, etc. However, design and generation of partially coherent beams with desirable properties is challenging. Moreover, the experimental characterization of the spatial coherence is a difficult problem involving second-order statistics represented by four-dimensional functions that cannot be directly measured and analyzed. We discuss the techniques for design and generation of partially coherent structurally stable beams and the recently developed phase-space tomography methods supported by simple experimental setups for practical quantitative characterization of partially coherent light spatial structure, including its local coherence properties.
dc.description.departmentDepto. de Óptica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Economía y Competitividad (MINECO), España
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/30800
dc.identifier.doi10.1117/12.2083773
dc.identifier.issn0277-786X
dc.identifier.officialurlhttp://dx.doi.org/10.1117/12.2083773
dc.identifier.relatedurlhttp://proceedings.spiedigitallibrary.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/24040
dc.journal.titleProceedings of SPIE
dc.language.isoeng
dc.publisherSociety of Photo-optical Instrumentation Engineers
dc.relation.projectIDTEC2011-23629
dc.rights.accessRightsopen access
dc.subject.cdu535
dc.subject.keywordPhase-space tomography
dc.subject.keywordSpatial coherence
dc.subject.keywordOptical beams
dc.subject.keywordReconstruction
dc.subject.keywordField
dc.subject.keywordTransform
dc.subject.ucmÓptica (Física)
dc.subject.unesco2209.19 Óptica Física
dc.titleSynthesis and characterization of complex partially coherent beams
dc.typejournal article
dc.volume.number9369
dcterms.references1. Alonso, M. A., “Wigner functions in optics: describing beams as ray bundles and pulses as particle ensembles”, Adv. Opt. Photon. 3(4), 272–365 (2011). 2. Tu, J. and Tamura, S., “Wave field determination using tomography of the ambiguity function”, Phys. Rev. E 55(2), 1946–1949 (1997). 3. Hennelly, B., Ojeda-Castañeda, J., and Testorf, M., eds., [Phase Space Optics: Fundamentals and Applications], McGraw-Hil (2009). 4. Cámara, A., Alieva, T., Castro, I., and Rodrigo, J. A., “Phase-space tomography for characterization of rotationally symmetric beams”, J. Opt. 16(1), 015705 (2014). 5. Goodman, J. W., [Statistical Optics], Wiley&Sons, NY (2000). 6. Alieva, T., Rodrigo, J. A., Cámara, A., and Abramochkin, E., “Partially coherent stable and spiral beams”, J. Opt. Soc. Am. A 30(11), 2237–2243 (2013). 7. Mandel, L. and Wolf, E., [Optical Coherence and Quantum Optics], Cambridge University Press, New York (1995). 8. Ozaktas, H. M., Zalevsky, Z., and Kutay, M. A., [The Fractional Fourier Transform with Applications in Optics and Signal Processing], John Wiley&Sons, NY, USA (2001). 9. Alieva, T., [Advances in Information Optics and Photonics, ICO International Trends in Optics: Vol. VI], ch. First-Order Optical Systems for Information Processing, 1–26, SPIE Press, USA (2008). 10. Sundar, K., Mukunda, N., and Simon, R., “Coherent-mode decomposition of general anisotropic Gaussian Schell-model beams”, J. Opt. Soc. Am. A 12(3), 560–569 (1995). 11. Ponomarenko, S. A., “A class of partially coherent beams carrying optical vortices”, J. Opt. Soc. Am. A 18(1), 150–156 (2001). 12. Piestun, R. and Shamir, J., “Generalized propagation-invariant wave fields”, J. Opt. Soc. Am. A 15, 3039–3044 (Dec 1998). 13. Alieva, T., Abramochkin, E., Asenjo-Garcia, A., and Razueva, E., “Rotating beams in isotropic optical system”, Opt. Express 18(4), 3568–3573 (2010). 14. Alieva, T. and Agullo-López, F., “Reconstruction of the optical correlation function in a quadratic refractive index medium”, Opt. Commun. 114, 161–169 (1995). 15. Tran, C. Q. and Nugent, K. A., “Recovering the complete coherence function of a generalized Schell model field”, Opt. Lett. 31(22), 3226–3227 (2006). 16. Gureyev, T. E., Roberts, A., and Nugent, K. A., “Partially coherent fields, the transport-of-intensity equation, and phase uniqueness”, J. Opt. Soc. Am. A 12(9), 1942–1946 (1995). 17. Agarwal, G. S. and Simon, R., “Reconstruction of the Wigner transform of a rotationally symmetric twodimensional beam from the Wigner transform of the beam’s one-dimensional sample”, Opt. Lett. 25(18), 1379–1381 (2000). 18. Cámara, A., Alieva, T., Rodrigo, J. A., and Calvo, M. L., “Phase space tomography reconstruction of the wigner distribution for optical beams separable in cartesian coordinates”, J. Opt. Soc. Am. A 26(6), 1301–1306 (2009). 19. Nugent, K. A., “Partially coherent diffraction patterns and coherence measurement”, J. Opt. Soc. Am. A 8, 1574–1579 (Oct 1991). 20. Santarsiero, M. and Borghi, R., “Measuring spatial coherence by using a reversed-wavefront Young interferometer”, Opt. Lett. 31(7), 861–863 (2006). 21. González, A. I. and Mejía, Y., “Nonredundant array of apertures to measure the spatial coherence in two dimensions with only one interferogram”, J. Opt. Soc. Am. A 28(6), 1107–1113 (2011). 22. Waller, L., Situ, G., and Fleischer, J. W., “Phase-space measurement and coherence synthesis of optical beams”, Nature Photon. 6(7), 474–479 (2012). 23. Raymer, M. G., Beck, M., and McAlister, D. F., “Complex wave-field reconstruction usign phase-space tomography”, Phys. Rev. Lett. 72(8), 1137–1140 (1994). 24. Cámara, A., Alieva, T., Rodrigo, J. A., and Calvo, M. L., “Phase space tomography reconstruction of the Wigner distribution for optical beams separable in Cartesian coordinates”, J. Opt. Soc. Am. A 26(6), 1301–1306 (2009). 25. Tian, L., Lee, J., Oh, S. B., and Barbastathis, G., “Experimental compressive phase space tomography”, Opt. Express 20(8), 8296–8308 (2012). 26. Alieva, T., Cámara, A., Rodrigo, J. A., and Calvo, M. L., [Optical and Digital Image Processing], ch. Phasespace tomography of optical beams, Wiley-VCH (2011). 27. Rodrigo, J. A., Alieva, T., and Calvo, M. L., “Programmable two-dimensional optical fractional Fourier processor”, Opt. Express 17(7), 4976–4983 (2009). 28. Rodrigo, J. A., Alieva, T., and Calvo, M. L., “Experimental implementation of the gyrator transform”, J. Opt. Soc. Am. A 24(10), 3135–3139 (2007). 29. Rodrigo, J. A., First-order optical systems in information processing and optronic devices, PhD thesis, Universidad Complutense de Madrid (2008). 30. Rodrigo, J. A., Alieva, T., and Bastiaans, M. J., [Optical and digital image processing], ch. 12, Wiley-VCH Verlag Berlin (2011). 31. Cámara, A., Optical beam characterisation via phase-space tomography, PhD thesis, Universidad Complutense de Madrid (2014). 32. Cámara, A., Rodrigo, J. A., and Alieva, T., “Optical coherenscopy based on phase-space tomography”, Opt. Express 21(11), 13169–13183 (2013).
dspace.entity.typePublication
relation.isAuthorOfPublicationf1512137-328a-4bb6-9714-45de778c1be4
relation.isAuthorOfPublication.latestForDiscoveryf1512137-328a-4bb6-9714-45de778c1be4

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
AlievaT105libre.pdf
Size:
1003.7 KB
Format:
Adobe Portable Document Format

Collections