Rank-one quantum games
Loading...
Full text at PDC
Publication date
2015
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Springer Basel
Citation
Abstract
In this work, we study rank-one quantum games. In particular, we focus on the study of the computability of the entangled value ω*. We show that the value ω* can be efficiently approximated up to a multiplicative factor of 4. We also study the behavior of ω* under the parallel repetition of rank-one quantum games, showing that it does not verify a perfect parallel repetition theorem. To obtain these results, we first connect rank-one games with the mathematical theory of operator spaces. We also reprove with these new tools essentially known results about the entangled value of rank-one games with one-way communication ω qow . In particular, we show that ω qow can be computed efficiently and it satisfies a perfect parallel repetition theorem.