Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Orbits of Cesaro type operators

dc.contributor.authorLeón Saavedra, F.
dc.contributor.authorPiqueras Lerena, A.
dc.contributor.authorSeoane Sepúlveda, Juan Benigno
dc.date.accessioned2023-06-20T10:33:06Z
dc.date.available2023-06-20T10:33:06Z
dc.date.issued2009
dc.description.abstractA bounded linear operator T on a Banach space X is called hypercyclic if there exists a vector x is an element of X such that its orbit, {T(n)x}, is dense in X. In this paper we show hypercyclic properties of the orbits of the Cesaro operator defined on different spaces. For instance, we show that the Cesaro operator defined on L(p)[0, 1] (1 < p < infinity) is hypercyclic. Moreover, it is chaotic and it has supercyclic subspaces. On the other hand, the Cesaro operator defined on other spaces of functions behave differently. Motivated by this, we study weighted Cesaro operators and different degrees of hypercyclicity are obtained. The proofs are based on the classical Muntz-Szasz theorem. We also propose problems and give new directions.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.facultyInstituto de Matemática Interdisciplinar (IMI)
dc.description.refereedTRUE
dc.description.sponsorshipJunta de Andalucia
dc.description.sponsorshipUCA
dc.description.sponsorshipJunta de Andalucıa
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/20033
dc.identifier.doi10.1002/mana.200610769
dc.identifier.issn0025-584X
dc.identifier.officialurlhttp://onlinelibrary.wiley.com/doi/10.1002/mana.200610769/pdf
dc.identifier.relatedurlhttp://www.wiley.com
dc.identifier.urihttps://hdl.handle.net/20.500.14352/50458
dc.issue.number5
dc.journal.titleMathematische Nachrichten
dc.language.isoeng
dc.page.final773
dc.page.initial764
dc.publisherWiley-Blackwell
dc.relation.projectIDMTM 2006-09060
dc.relation.projectIDFQM-257
dc.relation.projectIDMTM 2006-15546-C02-01
dc.relation.projectIDFQM-257
dc.relation.projectIDMTM 2006-03531.
dc.rights.accessRightsrestricted access
dc.subject.cdu517.98
dc.subject.keywordHypercyclicity
dc.subject.keywordsupercyclicity
dc.subject.keywordCesaro operators
dc.subject.keywordHypercyclic subspaces
dc.subject.ucmAnálisis funcional y teoría de operadores
dc.titleOrbits of Cesaro type operators
dc.typejournal article
dc.volume.number282
dcterms.referencesR. M. Aron, J. B. Seoane–Sepulveda, and A. Weber, Chaos on function spaces, Bull. Aust. Math. Soc. 71, No. 3,411–415 (2005). P. S. Bourdon, Orbits of hyponormal operators, Michigan Math. J. 44, No. 2, 345–353 (1997). A. Brown, P. R. Halmos, and A. L. Shields, Cesaro operators, Acta Sci. Math. (Szeged) 26, 125–137 (1965). G. Costakis and D. Hadjiloucas, Somewhere dense Cesaro orbits and rotations of Cesaro hypercyclic operators,Studia Math. 175, No. 3, 249–269 (2006). M. De la Rosa and C. Read, A hypercyclic operator whose direct sum T ⊕ T is not hypercyclic, J. Oper. Theory, to appear. R. deLaubenfels, H. Emamirad, and K.-G. Grosse–Erdmann,Chaos for semigroups of unbounded operators, Math.Nachr. 261/262, 47–59 (2003). T. Erdelyi and W. B. Johnson, The “full Muntz theorem” in Lp[0, 1] for 0 < p < 1, J. Anal. Math. 84, 145–172 (2001). P. Gavrut¸a, Weighted Ces`aro operators, An. Univ.Timis¸oara Ser. S¸ tiint¸. Mat. 27, No. 2, 39–44 (1989). G. Godefroy and J. H. Shapiro, Operators with dense,invariant, cyclic vector manifolds, J. Funct. Anal.98, No. 2,229–269 (1991). M. Gonzalez, The fine spectrum of the Cesaro operator in lp (1 < p < 1), Arch. Math. (Basel) 44, No. 4, 355–358 (1985). M. Gonzalez, F. Leon–Saavedra, and A. Montes–Rodrıguez,Semi-Fredholm theory: hypercyclic and supercyclic subspaces,Proc. London Math. Soc. (3) 81, No. 1, 169–189 (2000). K.-G. Grosse–Erdmann, Universal families and hypercyclic operators, Bull. Amer. Math. Soc. (N. S.) 36, No. 3, 345–381 (1999). P. R. Halmos and V. Sunder, Bounded Integral Operators on L2 Spaces (Springer-Verlag, 1978). T. L. Kriete, III and D. Trutt, The Ces`aro operator in l2 is subnormal, Amer. J. Math. 93, 215–225 (1971). F. Leon–Saavedra, Operators with hypercyclic Cesaro means Studia Math. 152, No. 3, 201–215 (2002). F. Leon–Saavedra and V. Muller, Rotations of hypercyclic and supercyclic operators, Integral Equations Oper. Theory 50, No. 3, 385–391 (2004). F. Leon–Saavedra and V. Muller, Hypercyclic sequences of operators, Studia Math. 175, No. 1, 1–18(2006). F. Leon–Saavedra and A. Piqueras–Lerena, On weak positive supercyclicity, Israel J. Math. 167, 303–313 (2008). F. Leon–Saavedra and A. Piqueras–Lerena, Positivity in the Theory of Supercyclic Operators, Banach Center Publications Vol. 75(Polish Acad. Sci., Warsaw, 2007). T. L. Miller and V. G. Miller, Local spectral theory and orbits of operators, Proc. Amer. Math. Soc. 127, No. 4,1029–1037 (1999). T. L. Miller, V. G. Miller, and R. C. Smith, Bishop’s property (β) and the Cesaro operator, J. London Math. Soc.(2) 58,No.1, 197–207(1998). A. Montes–Rodrıguez and H. N. Salas, Supercyclic subspaces,Bull. London Math. Soc. 35, No. 6, 721–737 (2003). A. Montes–Rodr´ıguez, J. Sanchez–A´ lvarez, and J.Zemanek, Uniform Abel–Kreiss boundedness and the extremal behaviour of the Volterra operator, Proc. London Math. Soc. (3) 91,No. 3, 761–788 (2005). A. Montes–Rodrıguez and S. Shkarin, The Volterra operator is not weakly supercyclic, J. Oper. Theory, to appear. A. Montes–Rodrıguez and Stanislav A. Shkarin, New results on a classical operator, in: Recent Advances in Operator Related Function Theory, Contemporary Mathematics Vol. 393 (Amer. Math. Soc., Providence, RI, 2006), pp. 139–157. J. H. Shapiro, Composition Operators and Classical Function Theory, Universitext: Tracts in Mathematics (Springer-Verlag, New York, 1993). S. Shkarin, Antisupercyclic operators and orbits of the Volterra operator, J. London Math. Soc. (2) 73, No. 2, 506–528 (2006).
dspace.entity.typePublication
relation.isAuthorOfPublicatione85d6b14-0191-4b04-b29b-9589f34ba898
relation.isAuthorOfPublication.latestForDiscoverye85d6b14-0191-4b04-b29b-9589f34ba898

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Seoane27.pdf
Size:
154.23 KB
Format:
Adobe Portable Document Format

Collections