Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

A conjecture on exceptional orthogonal polynomials

Loading...
Thumbnail Image

Full text at PDC

Publication date

2013

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Springer
Citations
Google Scholar

Citation

Abstract

Exceptional orthogonal polynomial systems (X-OPSs) arise as eigenfunctions of Sturm-Liouville problems, but without the assumption that an eigenpolynomial of every degree is present. In this sense, they generalize the classical families of Hermite, Laguerre, and Jacobi, and include as a special case the family of CPRS orthogonal polynomials introduced by Cariena et al. (J. Phys. A 41:085301, 2008). We formulate the following conjecture: every exceptional orthogonal polynomial system is related to a classical system by a Darboux-Crum transformation. We give a proof of this conjecture for codimension 2 exceptional orthogonal polynomials (X-2-OPs). As a by-product of this analysis, we prove a Bochner-type theorem classifying all possible X-2-OPSs. The classification includes all cases known to date plus some new examples of X-2-Laguerre and X-2-Jacobi polynomials.

Research Projects

Organizational Units

Journal Issue

Description

© Springer. The research of DGU was supported in part by MICINN-FEDER grant MTM2009- 06973 and CUR-DIUE grant 2009SGR859. The research of NK was supported in part by NSERC grant RGPIN 105490-2011. The research of RM was supported in part by NSERC grant RGPIN-228057-2009.

Unesco subjects

Keywords

Collections