Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Performance analysis of a wind turbine pitch neurocontroller with unsupervised learning

dc.contributor.authorSierra-García, Jesús Enrique
dc.contributor.authorSantos Peñas, Matilde
dc.date.accessioned2024-12-09T14:52:35Z
dc.date.available2024-12-09T14:52:35Z
dc.date.issued2020-09-15
dc.description.abstractIn this work, a neural controller for wind turbine pitch control is presented. The controller is based on a radial basis function (RBF) network with unsupervised learning algorithm. The RBF network uses the error between the output power and the rated power and its derivative as inputs, while the integral of the error feeds the learning algorithm. A performance analysis of this neurocontrol strategy is carried out, showing the influence of the RBF parameters, wind speed, learning parameters, and control period, on the system response. The neurocontroller has been compared with a proportional-integral-derivative (PID) regulator for the same small wind turbine, obtaining better results. Simulation results show how the learning algorithm allows the neural network to adjust the proper control law to stabilize the output power around the rated power and reduce the mean squared error (MSE) over time.
dc.description.departmentDepto. de Arquitectura de Computadores y Automática
dc.description.facultyInstituto de Tecnología del Conocimiento (ITC)
dc.description.refereedTRUE
dc.description.statuspub
dc.identifier.citationSierra-García, J. E., & Santos, M. (2020). Performance analysis of a wind turbine pitch neurocontroller with unsupervised learning. Complexity, 2020(1), 4681767.
dc.identifier.doihttps://doi.org/10.1155/2020/4681767
dc.identifier.officialurlhttps://onlinelibrary.wiley.com/doi/full/10.1155/2020/4681767
dc.identifier.urihttps://hdl.handle.net/20.500.14352/112245
dc.issue.number4681767
dc.journal.titleComplexity
dc.language.isoeng
dc.publisherWiley
dc.relation.projectIDMCI/AEI/ FEDER Project no. RTI2018-094902-B-C21
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationalen
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.keywordWind turbines
dc.subject.keywordPitch control
dc.subject.keywordNeural networks
dc.subject.keywordUnsupervised learning
dc.subject.keywordNeuro control
dc.subject.ucmInteligencia artificial (Informática)
dc.subject.unesco1203.04 Inteligencia Artificial
dc.titlePerformance analysis of a wind turbine pitch neurocontroller with unsupervised learning
dc.typejournal article
dc.volume.number2020
dspace.entity.typePublication
relation.isAuthorOfPublication99cac82a-8d31-45a5-bb8d-8248a4d6fe7f
relation.isAuthorOfPublication.latestForDiscovery99cac82a-8d31-45a5-bb8d-8248a4d6fe7f

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Complexity - 2020 - Sierra-García - Performance Analysis of a Wind Turbine Pitch Neurocontroller with Unsupervised Learning.pdf
Size:
3.72 MB
Format:
Adobe Portable Document Format

Collections