Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Cathodoluminescence characterization of InGaSb crystals

dc.book.title2004 24th International Conference on Microelectronics, Proceedings, Vols 1 and 2
dc.contributor.authorChioncel, M.F.
dc.contributor.authorDíaz-Guerra Viejo, Carlos
dc.contributor.authorPiqueras De Noriega, Francisco Javier
dc.contributor.authorVincent López, José Luis
dc.contributor.authorBermudez, V.
dc.contributor.authorDieguez, E.
dc.date.accessioned2023-06-20T13:41:06Z
dc.date.available2023-06-20T13:41:06Z
dc.date.issued2004
dc.description©(2004) IEEE. International Conference on Microelectronics (MIEL 2004).(24. 2004. Nis, Serbia). This work has been carried out in the frame of the Fifth Framework European Programme for research, HPRN-CT 2001-00199 project. M.F.C. acknowledges European Commission for financial support. Support from MCYT through project MAT2000-2119 is also
dc.description.abstractThe nature and the spatial distribution of radiative defects in In(X)Ga(1-x)Sb grown by the vertical Bridgman method have been studied by cathodoluminescence (CL) in a scanning electron microscope. The CL results have been complemented by X-ray microanalysis and backscattered electron imaging to relate the local luminescence properties to the chemical composition. Measurements of the band gap energy from the CL spectra, supported by X-ray compositional mappings, reveal an effective incorporation of In in the matrix, leading to the fori-nation of the ternary alloy in the whole volume of the ingot. A band often observed in the CL spectra, peaked at about 20 meV below the band gap energy, is attributed to the presence in the ternary alloy of an acceptor level that would correspond to the V(Ga)-Ga(Sb) acceptor in GaSb.
dc.description.departmentDepto. de Física de Materiales
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipFifth Framework European Programme for research
dc.description.sponsorshipEuropean Commission
dc.description.sponsorshipMCYT
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/26320
dc.identifier.isbn0-7803-8166-1
dc.identifier.officialurlhttp://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1314870&tag=1
dc.identifier.relatedurlhttp://ieeexplore.ieee.org
dc.identifier.urihttps://hdl.handle.net/20.500.14352/53374
dc.language.isoeng
dc.page.total4
dc.publisherIEEE
dc.relation.ispartofseriesProceedings (International Conference on Microelectronics.)
dc.relation.projectIDHPRN-CT 2001-00199
dc.relation.projectIDMAT2000-2119
dc.rights.accessRightsopen access
dc.subject.cdu538.9
dc.subject.keywordGallium Antimonide
dc.subject.keywordGasb
dc.subject.keywordPhotoluminescence
dc.subject.keywordGrowth
dc.subject.keywordInsb
dc.subject.ucmFísica de materiales
dc.titleCathodoluminescence characterization of InGaSb crystals
dc.typebook part
dcterms.references[I] P.S. Dutta, H.L. Bhat, and V. Kumar, ”The physics and technology of gallium antimonide: an emerging optoelectronic material” 1997,J. Appl. Phyx., vol. 81, pp. 5821-5870. [2] O.V. Sulima, A. Bett, P.S. Dutta, M.G. Mauk, and R.L. Mueller, “CaSb-, InGaAsSb-, InGaSb-, InAsSbP- and Ge-TPV cells with diffused emitters”, 2002, 29th /EEE Photovoltoic Specialists Conference, New Orleans, pp. 892-895. [3] J.P. Garandet, T. Duffar, and J. Favier “Vertical gradicnt freeze growth of ternary GaSb-lnSb crystals”, 1990, J. C&r. Growth, vol. 106, pp. 426-436. [4] P. -Hidalgo, B. Mendez, J. Piqueras, P.S. Dutta, and E. Dieguez “Effect of In doping in CaSb crystals tudied by cathodoluminescence” 1999, Semicond. Sci.Technol. vol. 14, pp. 901-904. [5] P.S. Duna and A.G. Ostrogorsky, “Suppression of cracks in In,Gal.,Sb crystals through forced convection in the melt”, 1998, J. Ciysl. Growth vol. 194, pp.1-7. [6] F.S. Juang, Y.K. Su, and T.S. Wu, “Relationship between solid and vapor phase compositions for In,Gal,Sb epilayers grown by MOCVD”, 1991, Solid State Eiectronics vol. 34. pp. 1225-1229. [7] B. MCndez, P.S. Dutta, J. Piqueras,and E. Dieguez, “Cathodoluminescence studies of growth and process-induced defects in bulk gallium antimonide”, 1995, Appi. Phys. Lett. vol. 67, pp. 2648-2650. [8] M.C. Wu and C.C. Chen, “Photoluminescence of high-quality GaSb grown from Ga- and Sb-rich solutions by liquid-phase epitaxy”, 1992, J. Appl. Phys., vol. 72, pp. 4275.4280. [9] I. Shin, Y. Hsu Y, T.C. Hsu, G.B. Stringfellow, and R. W. Gedridge, “InSb, GaSb, and GaInSb grown using trisdimethylaminoantimony”, 1995, J. Electron. Mater. vol. 24,pp. 1563.1569, [10] J. Allegre, M. Averous, R. Jourdan, and A. Loullie, “Photoluminescence studies on Ga,In,.,Sb allovs”. 1916. 3. .. Lumin., vol.l1,339-347. 1980,Phil. Mag. A, vo1.41,pp. 447-458. [11] D. Mathiot and G. Edelin, “Diffusion of indium in GaSb,
dspace.entity.typePublication
relation.isAuthorOfPublicationb1b44979-3a0d-45d7-aa26-a64b0dbfee18
relation.isAuthorOfPublication68dabfe9-5aec-4207-bf8a-0851f2e37e2c
relation.isAuthorOfPublication.latestForDiscoveryb1b44979-3a0d-45d7-aa26-a64b0dbfee18

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
PiquerasJ123.pdf
Size:
337.48 KB
Format:
Adobe Portable Document Format