Contact effects in spin transport along double-helical molecules

dc.contributor.authorAi-Min, Guo
dc.contributor.authorDíaz García, Elena
dc.contributor.authorGaul, Christopher
dc.contributor.authorGutierrez, R.
dc.contributor.authorDomínguez-Adame Acosta, Francisco
dc.contributor.authorCuniberti, G.
dc.contributor.authorSun, Qing-feng
dc.date.accessioned2023-06-19T13:33:14Z
dc.date.available2023-06-19T13:33:14Z
dc.date.issued2014-04-28
dc.description© 2014 American Physical Society. This work was supported by the DAAD (54367888), by NBRP of China (2012CB921303), by MINECO (Grants No. PRI-AIBDE-2011-0.927 and No. MAT 2010-17180), by NSFChina under Grant No. 11274364, and by PDSF-China under Grant No. 2013M540153. We acknowledge support from the German Excellence Initiative: Cluster of Excellence EXC 1056 “Center for Advancing Electronics Dresden” (cfAED). A.M.G. and E.D. contributed equally to this work.
dc.description.abstractWe report on spin transport along double-helical molecular systems by considering various contact configurations and asymmetries between the two helical strands in the regime of completely coherent charge transport. Our results reveal that no spin polarization appears in two-terminal molecular devices when coupled to one-dimensional electrodes. The same holds in the case of finite-width electrodes if there is a bottleneck of one single site in the system electrode-molecule-electrode. Then, additional dephasing is necessary to induce spin-filtering effects. In contrast, nonzero spin polarization is found in molecular devices with multiple terminals or with two finite-width electrodes, each of them connected to more than one site of the molecule. The magnitude of spin polarization can be enhanced by increasing the asymmetry between the two strands. We point out that the spin-filtering effects could emerge in double-helical molecular devices at low temperature without dephasing by a proper choice of the electrode number and the connection between the molecule and the electrodes.
dc.description.departmentDepto. de Física de Materiales
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipMINECO
dc.description.sponsorshipDAAD
dc.description.sponsorshipNBRP of China
dc.description.sponsorshipNSF-China
dc.description.sponsorshipPDSF-China
dc.description.sponsorshipcfAED
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/29638
dc.identifier.doi10.1103/PhysRevB.89.205434
dc.identifier.issn1098-0121
dc.identifier.officialurlhttp://dx.doi.org/10.1103/PhysRevB.89.205434
dc.identifier.relatedurlhttp://journals.aps.org
dc.identifier.urihttps://hdl.handle.net/20.500.14352/34002
dc.issue.number20
dc.journal.titlePhysical review B
dc.language.isoeng
dc.publisherAmerican Physical Society
dc.relation.projectIDMAT 2010-17180
dc.relation.projectIDPRI-AIBDE-2011-0.927
dc.relation.projectID54367888
dc.relation.projectID2012CB921303
dc.relation.projectID11274364
dc.relation.projectID2013M540153
dc.relation.projectIDEXC 1056
dc.rights.accessRightsopen access
dc.subject.cdu538.9
dc.subject.keywordSingle dna-molecules
dc.subject.keywordElectron transmission
dc.subject.keywordHole transfer
dc.subject.keywordConductivity
dc.subject.keywordSelectivity
dc.subject.keywordConductance
dc.subject.keywordPhase
dc.subject.ucmFísica de materiales
dc.titleContact effects in spin transport along double-helical molecules
dc.typejournal article
dc.volume.number89
dcterms.references[1] B. Göhler, V. Hamelbeck, T. Z. Markus, M. Kettner, G. F. Hanne, Z. Vager, R. Naaman, and H. Zacharias, Science 331, 894 (2011). [2] Z. Xie, T. Z. Markus, S. R. Cohen, Z. Vager, R. Gutierrez, and R. Naaman, Nano Lett. 11, 4652 (2011). [3] K. S. Kumar, N. Kantor-Uriel, S. P. Mathew, R. Guliamov, and R. Naaman, Phys. Chem. Chem Phys. 15, 18357 (2013). [4] D. Mishra, T. Z. Markus, R. Naaman, M. Kettner, B. Gohler, H. Zacharias, N. Friedman, M. Sheves, and C. Fontanesi, Proc. Natl. Acad. Sci. (USA) 110, 14872 (2013). [5] A.-M. Guo and Q.-F. Sun, Phys. Rev. Lett. 108, 218102 (2012). [6] A.-M. Guo and Q.-F. Sun, Phys. Rev. B 86, 035424 (2012). [7] A.-M. Guo and Q.-F. Sun, Phys. Rev. B 86, 115441 (2012). [8] R. Gutierrez, E. Díaz, R. Naaman, and G. Cuniberti, Phys. Rev. B 85, 081404(R) (2012). [9] R. Gutierrez, E. Díaz, C. Gaul, T. Brumme, F. DomínguezAdame, and G. Cuniberti, J. Phys. Chem. C 117, 22276 (2013). [ 10] S. Yeganeh, M. A. Ratner, E. Medina, and V. Mujica, J. Chem. Phys. 131, 014707 (2009). [11] E. Medina, F. López, M. A. Ratner, and V. Mujica, Europhys. Lett. 99, 17006 (2012). [12] J. Gersten, K. Kaasbjerg, and A. Nitzan, J. Chem. Phys. 139, 114111 (2013). [13] A. A. Eremko and V. M. Loktev, Phys. Rev. B 88, 165409 (2013). [14] D. Vager and Z. Vager, Phys. Lett. A 376, 1895 (2012). [15] R. Naaman and D. H. Waldeck, J. Phys. Chem. Lett. 3, 2178 (2012). [16] N. J. Tao, Nat. Nanotech. 1, 173 (2006). [17] H. W. Fink and C. Scönenberger, Nature (London) 398, 407 (1999). [18] P. J. de Pablo, F. Moreno-Herrero, J. Colchero, J. Gómez Herrero, P. Herrero, A. M. Baró, P. Ordejón, J. M. Soler, and E. Artacho, Phys. Rev. Lett. 85, 4992 (2000). [19] A. Bezryadin, C. Dekker, and G. Schmid, Appl. Phys. Lett. 71, 1273 (1997). [20] D. Porath, A. Bezryadin, S. de Vries, and C. Dekker, Nature (London) 403, 635 (2000). [21] X. D. Cui, A. Primak, X. Zarate, J. Tomfohr, O. F. Sankey, A. L. Moore, T. A. Moore, D. Gust, G. Harris, and S. M. Lindsay, Science 294, 571 (2001). [22] B. Xu, P. Zhang, X. Li, and N. Tao, Nano Lett. 4, 1105 (2004). [23] H. Cohen, C. Nogues, R. Naaman, and D. Porath, Proc. Natl. Acad. Sci. (USA) 102, 11589 (2005). [24] X. Guo, A. A. Gorodetsky, J. Hone, J. K. Barton, and C. Nuckolls, Nat. Nanotech. 3, 163 (2008). [25] F. C. Grozema, Y. A. Berlin, and L. D. A. Siebbeles, J. Am. Chem. Soc. 122, 10903 (2000). [26] X. F. Wang and T. Chakraborty, Phys. Rev. Lett. 97, 106602 (2006). [27] A. A. Voityuk, J. Jortner, M. Bixon, and N. Rösch, J. Chem. Phys. 114, 5614 (2001). [28] K. Senthilkumar, F. C. Grozema, C. F. Guerra, F. M. Bickelhaupt, F. D. Lewis, Y. A. Berlin, M. A. Ratner, and L. D. A. Siebbeles, J. Am. Chem. Soc. 127, 14894 (2005). [29] L. G. D. Hawke, G. Kalosakas, and C. Simserides, Eur. Phys. J. E 32, 291 (2010). [30] D. A. Ryndyk, R. Gutiérrez, B. Song, and G. Cuniberti, in Energy Transfer Dynamics in Biomaterial Systems, Springer Series in Chemical Physics, edited by I. Burghardt, V. May, D. A. Micha, and E. R. Bittner (Springer-Verlag, Berlin, 2009), Vol. 93, pp. 213–335. [31] D. H. Lee and J. D. Joannopoulos, Phys. Rev. B 23, 4997 (1981). [32] Q.-F. Sun and X. C. Xie, Phys. Rev. B 71, 155321 (2005). [33] R. Schuster, E. Buks, M. Heiblum, D. Mahalu, V. Umansky, and H. Shtrikman, Nature (London) 385, 417 (1997). [34] J. L. D’Amato and H. M. Pastawski, Phys. Rev. B 41, 7411 (1990).
dspace.entity.typePublication
relation.isAuthorOfPublicationd03da7bf-8066-4f33-93e2-ac077fd4fcb8
relation.isAuthorOfPublication3df963ba-ec00-405d-9b2a-9200d1b4148b
relation.isAuthorOfPublicationdbc02e39-958d-4885-acfb-131220e221ba
relation.isAuthorOfPublication.latestForDiscoveryd03da7bf-8066-4f33-93e2-ac077fd4fcb8

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Dguez-Adame204 libre.pdf
Size:
465.61 KB
Format:
Adobe Portable Document Format

Collections