Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Some new statistics for testing hypotheses in parametric models

Loading...
Thumbnail Image

Full text at PDC

Publication date

1997

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Academic Press
Citations
Google Scholar

Citation

Abstract

The paper deals with simple and composite hypotheses in statistical models with i.i.d. observations and with arbitrary families dominated by a finite measures and parametrized by vector-valued variables. It introduces phi-divergence testing statistics as alternatives to the classical ones: the generalized likelihood ratio and the statistics of Wald and Rao. It is shown that, under the assumptions of standard type about hypotheses and model densities, the results about asymptotic distribution of the classical statistics established so far for the counting and Lebesgue dominating measures (discrete and continuous models) remain true also in the general case. Further, these results are extended to the phi-divergence statistics with smooth convex functions phi. The choice of phi-divergence statistics optimal from the point of view of power is discussed and illustrated by several examples.

Research Projects

Organizational Units

Journal Issue

Description

Unesco subjects

Keywords

Collections