Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Data-driven detection and characterization of communities of accounts collaborating in MOOCs

dc.contributor.authorRuipérez Valiente, José Antonio
dc.contributor.authorJaramillo Morillo, Daniel
dc.contributor.authorJoksimović, Srećko
dc.contributor.authorKovanović, Vitomir
dc.contributor.authorMuñoz-Merino, Pedro J.
dc.contributor.authorGašević, Dragan
dc.date.accessioned2023-06-16T14:18:27Z
dc.date.available2023-06-16T14:18:27Z
dc.date.issued2021-07-13
dc.descriptionCRUE-CSIC (Acuerdos Transformativos 2021)
dc.description.abstractCollaboration is considered as one of the main drivers of learning and it has been broadly studied across numerous contexts, including Massive Open Online Courses (MOOCs). The research on MOOCs has risen exponentially during the last years and there have been a number of works focused on studying collaboration. However, these previous studies have been restricted to the analysis of collaboration based on the forum and social interactions, without taking into account other possibilities such as the synchronicity in the interactions with the platform. Therefore, in this work we performed a case study with the goal of implementing a data-driven approach to detect and characterize collaboration in MOOCs. We applied an algorithm to detect synchronicity links based on their submission times to quizzes as an indicator of collaboration, and applied it to data from two large Coursera MOOCs. We found three different profiles of user accounts, that were grouped in couples and larger communities exhibiting different types of associations between user accounts. The characterization of these user accounts suggested that some of them might represent genuine online learning collaborative associations, but that in other cases dishonest behaviors such as free-riding or multiple account cheating might be present. These findings call for additional research on the study of the kind of collaborations that can emerge in online settings.
dc.description.departmentDepto. de Ingeniería de Software e Inteligencia Artificial (ISIA)
dc.description.facultyFac. de Informática
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Economía y Competitividad (MINECO)
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/69377
dc.identifier.doi10.1016/j.future.2021.07.003
dc.identifier.issn0167-739X
dc.identifier.officialurlhttps://doi.org/10.1016/j.future.2021.07.003
dc.identifier.urihttps://hdl.handle.net/20.500.14352/4610
dc.journal.titleFuture Generation Computer Systems
dc.language.isoeng
dc.page.final603
dc.page.initial590
dc.publisherNorth-Holland Publishing
dc.relation.projectIDJuan de la Cierva (FJCI-2017-34926)
dc.relation.projectIDPROF-XXI (609767-EPP-1-ES-EPPKA2-CBHE-JP)
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 España
dc.rights.accessRightsopen access
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.subject.keywordLearning analytics
dc.subject.keywordEducational data mining
dc.subject.keywordCollaborative learning
dc.subject.keywordMassive open online courses
dc.subject.keywordArtificial intelligence
dc.subject.ucmInteligencia artificial (Informática)
dc.subject.unesco1203.04 Inteligencia Artificial
dc.titleData-driven detection and characterization of communities of accounts collaborating in MOOCs
dc.typejournal article
dc.volume.number125
dspace.entity.typePublication
relation.isAuthorOfPublication85628813-a28a-49b0-8301-aabb97fdf98b
relation.isAuthorOfPublication.latestForDiscovery85628813-a28a-49b0-8301-aabb97fdf98b

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1-s2.0-S0167739X21002570-main.pdf
Size:
1.56 MB
Format:
Adobe Portable Document Format

Collections