Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Machine learning identifies experimental brain metastasis subtypes based on their influence on neural circuits

dc.contributor.authorSánchez-Aguilera López, Alberto
dc.contributor.authorMasmudi Martín, Mariam
dc.contributor.authorNavas Olivé, Andrea
dc.contributor.authorBaena, Patricia
dc.contributor.authorHernández Oliver, Carolina
dc.contributor.authorPriego, Neibla
dc.contributor.authorCordón Barris, Lluis
dc.contributor.authorÁlvaro Espinosa, Laura
dc.contributor.authorGarcía, Santiago
dc.contributor.authorMartínez, Sonia
dc.contributor.authorLafarga, Miguel
dc.contributor.authorRENACER
dc.contributor.authorLin, Michael Z
dc.contributor.authorAl-Shahrour, Fátima
dc.contributor.authorMenéndez de la Prida, Liset
dc.contributor.authorValiente, Manuel
dc.date.accessioned2024-11-19T09:09:55Z
dc.date.available2024-11-19T09:09:55Z
dc.date.issued2023-09-11
dc.description.abstractA high percentage of patients with brain metastases frequently develop neurocognitive symptoms; however, understanding how brain metastasis co-opts the function of neuronal circuits beyond a tumor mass effect remains unknown. We report a comprehensive multidimensional modeling of brain functional analyses in the context of brain metastasis. By testing different preclinical models of brain metastasis from various primary sources and oncogenic profiles, we dissociated the heterogeneous impact on local field potential oscillatory activity from cortical and hippocampal areas that we detected from the homogeneous inter-model tumor size or glial response. In contrast, we report a potential underlying molecular program responsible for impairing neuronal crosstalk by scoring the transcriptomic and mutational profiles in a model-specific manner. Additionally, measurement of various brain activity readouts matched with machine learning strategies confirmed model-specific alterations that could help predict the presence and subtype of metastasis.
dc.description.departmentDepto. de Fisiología
dc.description.facultyFac. de Medicina
dc.description.refereedTRUE
dc.description.statuspub
dc.identifier.citationSanchez-Aguilera et al., Machine learning identifies experimental brain metastasis subtypes based on their influence on neural circuits, Cancer Cell (2023), https://doi.org/10.1016/j.ccell.2023.07.010
dc.identifier.doi10.1016/j.ccell.2023.07.010
dc.identifier.essn1878-3686
dc.identifier.issn1535-6108
dc.identifier.officialurlhttps://doi.org/10.1016/j.ccell.2023.07.010
dc.identifier.relatedurlhttps://www.sciencedirect.com/science/article/pii/S1535610823002507?via%3Dihub
dc.identifier.urihttps://hdl.handle.net/20.500.14352/110756
dc.issue.number9
dc.journal.titleCancer Cell
dc.language.isoeng
dc.page.final1649
dc.page.initial1637
dc.publisherElsevier
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationalen
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.cdu612.8
dc.subject.keywordcancer neuroscience
dc.subject.keywordbrain metastasis
dc.subject.keywordbrain circuit impact
dc.subject.keywordbiomarkers
dc.subject.keywordelectrophysiology
dc.subject.keywordelta oscillations
dc.subject.keywordgamma oscillations
dc.subject.keyworddecision trees
dc.subject.ucmNeurociencias (Medicina)
dc.subject.unesco2490.01 Neurofisiología
dc.titleMachine learning identifies experimental brain metastasis subtypes based on their influence on neural circuits
dc.typejournal article
dc.type.hasVersionVoR
dc.volume.number41
dspace.entity.typePublication
relation.isAuthorOfPublication2b182307-e6a0-4e8c-a9a9-d901688134fb
relation.isAuthorOfPublication.latestForDiscovery2b182307-e6a0-4e8c-a9a9-d901688134fb

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
2023 Sanchez-Aguilera et al.pdf
Size:
7.26 MB
Format:
Adobe Portable Document Format

Collections