Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Algèbres de Lie rigides dont le nilradical est filiforme

Loading...
Thumbnail Image

Full text at PDC

Publication date

1991

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier
Citations
Google Scholar

Citation

Abstract

In this article the authors study filiform nilpotent Lie algebras n which possess a given torus T of semisimple derivations. The solvable Lie algebras obtained by a semidirect product T⊕n depend, up to isomorphism, on one or many parameters (continuous family) or zero parameters (rigid object). When the dimension n of n grows, the number of Jacobi relations increases faster than the number of structure constants and the parameters, on which depend the continuous families for n, satisfy new equations for n+1. This phenomenon, well known since an example given by F. Bratzlavsky [J. Algebra 30 (1974), 305–316; is at the origin of the existence of the rigid Lie algebras which have nonvanishing second adjoint cohomology group. This paper gives new examples of such algebras, thus confirming the frequency of this phenomenon. The authors propose as well the first example of a rigid Lie algebra with nonrational structure constants.

Research Projects

Organizational Units

Journal Issue

Description

UCM subjects

Unesco subjects

Keywords

Collections