Wireless and fiber-based post-quantum-cryptography-secured IPsec tunnel
Loading...
Official URL
Full text at PDC
Publication date
2024
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
MDPI
Citation
Lawo, D.C.; Abu Bakar, R.; Cano Aguilera, A.; Cugini, F.; Imaña, J.L.; Tafur Monroy, I.; Vegas Olmos, J.J. Wireless and Fiber-Based Post-Quantum-Cryptography-Secured IPsec Tunnel. Future Internet 2024, 16, 300. https://doi.org/10.3390/fi16080300
Abstract
In the near future, commercially accessible quantum computers are anticipated to revolutionize the world as we know it. These advanced machines are predicted to render traditional cryptographic security measures, deeply ingrained in contemporary communication, obsolete. While symmetric cryptography methods like AES can withstand quantum assaults if key sizes are doubled compared to current standards, asymmetric cryptographic techniques, such as RSA, are vulnerable to compromise. Consequently, there is a pressing need to transition towards post-quantum cryptography (PQC) principles in order to safeguard our privacy effectively. A challenge is to include PQC into existing protocols and thus into the existing communication structure. In this work, we report on the first experimental IPsec tunnel secured by the PQC algorithms Falcon, Dilithium, and Kyber. We deploy our IPsec tunnel in two scenarios. The first scenario represents a high-performance data center environment where many machines are interconnected via high-speed networks. We achieve an IPsec tunnel with an AES-256 GCM encrypted east–west throughput of 100 Gbit/s line rate. The second scenario shows an IPsec tunnel between a wireless NVIDIA Jetson and the cloud that achieves a 0.486 Gbit/s AES-256 GCM encrypted north–south throughput. This case represents a mobile device that communicates securely with applications running in the cloud.
Description
QUARK project-Marie Skłodowska-Curie Actions with grant number 101073355
CLEVER-KDTJU-Grant agreement ID: 101097560