Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Deep-MEG: spatiotemporal CNN features and multiband ensemble classification for predicting the early signs of Alzheimer’s disease with magnetoencephalography

dc.contributor.authorGiovannetti, Antonio
dc.contributor.authorSusi, Gianluca
dc.contributor.authorCasti, Paola
dc.contributor.authorMencattini, Arianna
dc.contributor.authorPusil Arce, Sandra Angélica
dc.contributor.authorLópez García, María Eugenia
dc.contributor.authorDi Natale, Corrado
dc.contributor.authorMartinelli, Eugenio
dc.date.accessioned2025-01-28T15:11:43Z
dc.date.available2025-01-28T15:11:43Z
dc.date.issued2021-05-19
dc.description"Open access funding provided by Universita` degli Studi di Roma Tor Vergata within the CRUI-CARE Agreement"
dc.description.abstractIn this paper, we present the novel Deep-MEG approach in which image-based representations of magnetoencephalography (MEG) data are combined with ensemble classifiers based on deep convolutional neural networks. For the scope of predicting the early signs of Alzheimer’s disease (AD), functional connectivity (FC) measures between the brain bio-magnetic signals originated from spatially separated brain regions are used as MEG data representations for the analysis. After stacking the FC indicators relative to different frequency bands into multiple images, a deep transfer learning model is used to extract different sets of deep features and to derive improved classification ensembles. The proposed Deep-MEG architectures were tested on a set of resting-state MEG recordings and their corresponding magnetic resonance imaging scans, from a longitudinal study involving 87 subjects. Accuracy values of 89% and 87% were obtained, respectively, for the early prediction of AD conversion in a sample of 54 mild cognitive impairment subjects and in a sample of 87 subjects, including 33 healthy controls. These results indicate that the proposed Deep-MEG approach is a powerful tool for detecting early alterations in the spectral–temporal connectivity profiles and in their spatial relationships.
dc.description.departmentDepto. de Estructura de la Materia, Física Térmica y Electrónica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Economía y Competitividad (España)
dc.description.sponsorshipUniversita` degli Studi di Roma Tor Vergata
dc.description.statuspub
dc.identifier.citationGiovannetti, A., Susi, G., Casti, P., Mencattini, A., Pusil, S., López, M. E., ... & Martinelli, E. (2021). Deep-MEG: spatiotemporal CNN features and multiband ensemble classification for predicting the early signs of Alzheimer’s disease with magnetoencephalography. Neural Computing and Applications, 33(21), 14651-14667.
dc.identifier.doi10.1007/s00521-021-06105-4
dc.identifier.essn1433-3058
dc.identifier.issn0941-0643
dc.identifier.officialurlhttps://doi.org/10.1007/s00521-021-06105-4
dc.identifier.relatedurlhttps://link.springer.com/article/10.1007/s00521-021-06105-4
dc.identifier.urihttps://hdl.handle.net/20.500.14352/116651
dc.issue.number21
dc.journal.titleNeural Computing and Applications
dc.language.isoeng
dc.page.final14667
dc.page.initial14651
dc.publisherSpringer
dc.relation.projectIDinfo:eu-repo/grantAgreement/MICINN//PSI2009-14415-C03-01/ES/MEASURES OF FUNCTIONAL CONNECTIVITY WITH MEG DURTING MEMORY INTERFERENCE PARADIGM/
dc.relation.projectIDinfo:eu-repo/grantAgreement/MICINN// PSI2012-38375-C03-01/ES/ ENTENDIENDO LAS QUEJAS DE MEMORIA EN EL ENVEJECIMIENTO:UNA APROXIMACION DESDE LA GENETICA, LA NEUROPSICOLOGIA Y LA CONECTIVIDAD ANATOMO-FUNCIONAL/
dc.rightsAttribution 4.0 Internationalen
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.cdu602
dc.subject.cdu53
dc.subject.keywordAlzheimer's
dc.subject.keywordCNN
dc.subject.keywordFunctional connectivity
dc.subject.keywordDeep Learning
dc.subject.keywordMagnetoencephalography
dc.subject.ucmFísica (Física)
dc.subject.ucmCiencias Biomédicas
dc.subject.unesco3306 Ingeniería y Tecnología Eléctricas
dc.subject.unesco2404 Biomatemáticas
dc.titleDeep-MEG: spatiotemporal CNN features and multiband ensemble classification for predicting the early signs of Alzheimer’s disease with magnetoencephalography
dc.typejournal article
dc.type.hasVersionVoR
dc.volume.number33
dspace.entity.typePublication
relation.isAuthorOfPublication20ae4bbe-1ac0-42b8-98b1-3e3080aeeba7
relation.isAuthorOfPublication76a64418-4784-417c-8de8-a014b05d8671
relation.isAuthorOfPublicationddd4612a-44c8-4cb3-bd54-2332d6f37877
relation.isAuthorOfPublication.latestForDiscovery20ae4bbe-1ac0-42b8-98b1-3e3080aeeba7

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Deep-MEG.pdf
Size:
1.6 MB
Format:
Adobe Portable Document Format

Collections