Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Uniform approximation theorems for real-valued continuous functions

dc.contributor.authorGarrido, M. Isabel
dc.contributor.authorMontalvo, Francisco
dc.date.accessioned2023-06-20T16:53:14Z
dc.date.available2023-06-20T16:53:14Z
dc.date.issued1992
dc.description.abstractFor a topological space X, F(X) denotes the algebra of real-valued functions over X and C(X) the subalgebra of all functions in F(X) which are continuous. In this paper we characterize the uniformly dense linear subspaces of C(X) by means of the so-called "Lebesgue chain condition". This condition is a generalization to the unbounded case of the S-separation by Blasco and Molto for the bounded case. Through the Lebesgue chain condition we also characterize the linear subspaces of F(X) whose uniform closure is closed under composition with uniformly continuous functions.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/15541
dc.identifier.doi10.1016/0166-8641(92)90054-4
dc.identifier.issn0166-8641
dc.identifier.officialurlhttp://www.sciencedirect.com/science/article/pii/0166864192900544
dc.identifier.relatedurlhttp://www.sciencedirect.com
dc.identifier.urihttps://hdl.handle.net/20.500.14352/57333
dc.issue.number2
dc.journal.titleTopology and its Applications
dc.language.isoeng
dc.page.final155
dc.page.initial145
dc.publisherElsevier Science
dc.rights.accessRightsrestricted access
dc.subject.cdu515.1
dc.subject.keywordLebesgue chain condition
dc.subject.ucmTopología
dc.subject.unesco1210 Topología
dc.titleUniform approximation theorems for real-valued continuous functions
dc.typejournal article
dc.volume.number45
dcterms.referencesF.W. Anderson, Approximation in systems of real-valued continuous functions, Trans. Amer. Math. Sot. 103 (1962) 249-271. J.L. Blasco and A. Molto, On the uniform closure of a linear space of bounded real-valued functions, Ann. Mat. Pura Appl. (4) 134 (1983) 233-239. M.I. Garrido, Approximation Uniforme en Espacios de Funciones Continuas, Publicaciones de1 Departamento de Matematicas, Universidad de Extremadura 24 (Univ. Extremadura, Badajoz, 1990). M.I. Garrido and F. Montalvo, S-separation de conjuntos de Lebesgue y condition de cadena, in: Actas de XIV Jornadas Hispano-Lusas de Matematicas (Univ. de La Laguna, Tenerife, 1990) 621-624. L. Gillman and M. Jerison, Rings of Continuous Functions (Springer, Berlin, 1976). G.J.O. Jameson, Topology and Normal Spaces (Chapman & Hall, London, 1974). S. Mrowka, On some approximation theorems, Nieuw Arch. Wisk. 16 (1968) 94-1 Il. R. Narasimhan, Analysis on Real and Complex Manifolds (North-Holland, Amsterdam, 1968). H. Tie&e, Uber Functionen die anf einer abgeschlossenen Menge steting sind, J. Math. 14.5 (1915) 9-14.
dspace.entity.typePublication

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Garrido13.pdf
Size:
737 KB
Format:
Adobe Portable Document Format

Collections