Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA Disculpen las molestias.
 

Longitudinal polarization periodicity of unpolarized light passing through a double wedge depolarizer

dc.contributor.authorPiquero Sanz, Gemma María
dc.contributor.authorSantarsiero, Massimo
dc.contributor.authorGonzález de Sande, Juan Carlos
dc.contributor.authorGori, Franco
dc.date.accessioned2023-06-20T03:36:15Z
dc.date.available2023-06-20T03:36:15Z
dc.date.issued2012-12-03
dc.description© 2012 Optical Society of America. One of the authors (J. C. G. S.) is grateful to a grant from 2011 Fundación Caja Madrid Program. J. C. G. S. and G. P. acknowledge the hospitality of Prof. F. Gori’s group.
dc.description.abstractThe polarization characteristics of unpolarized light passing through a double wedge depolarizer are studied. It is found that the degree of polarization of the radiation propagating after the depolarizer is uniform across transverse planes after the depolarizer, but it changes from one plane to another in a periodic way giving, at different distances, unpolarized, partially polarized, or even perfectly polarized light. An experiment is performed to confirm this result. Measured values of the Stokes parameters and of the degree of polarization are in complete agreement with the theoretical predictions.
dc.description.departmentDepto. de Óptica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipFundación Caja Madrid Program
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/23319
dc.identifier.doi10.1364/OE.20.027348
dc.identifier.issn1094-4087
dc.identifier.officialurlhttp://dx.doi.org/10.1364/OE.20.027348
dc.identifier.relatedurlhttp://www.opticsinfobase.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/44016
dc.issue.number25
dc.journal.titleOptics Express
dc.language.isoeng
dc.page.final27360
dc.page.initial27348
dc.publisherThe Optical Society Of America
dc.rights.accessRightsopen access
dc.subject.cdu535
dc.subject.keywordSubwavelength Dielectric Gratings
dc.subject.keywordOptically-Active Media
dc.subject.keywordBeams
dc.subject.keywordCoherence
dc.subject.keywordCrystals
dc.subject.keywordPropagation
dc.subject.keywordQuartz
dc.subject.keywordFields
dc.subject.ucmÓptica (Física)
dc.subject.unesco2209.19 Óptica Física
dc.titleLongitudinal polarization periodicity of unpolarized light passing through a double wedge depolarizer
dc.typejournal article
dc.volume.number20
dcterms.references1. J. P. McGuire and R. A. Chipman, “Analysis of spatial pseudodepolarizers in imaging systems”, Opt. Eng. 29, 1478–1484 (1990). 2. S. C. McClain, R. A. Chipman, and L. W. Hillman “Aberrations of a horizontal/vertical depolarizer”, Appl. Opt. 31, 2326-2331 (1992). 3. M. El Sherif, M.S. Khalil, S. Khodeir, and N. Nagib, “Simple depolarizers for spectrophotometric measurements of anisotropic samples”, Opt. & Laser Technol. 28, 561-563 (1996). 4. G. Biener, A. Niv, V. Kleiner, and E. Hasman, “Computer-generated infrared depolarizer using space-variant subwavelength dielectric gratings”, Opt. Lett. 28, 1400–1402 (2003). 5. V. A. Bagan, B. L. Davydov, and I. E. Samartsev, “Characteristics of Cornu depolarisers made from quartz and paratellurite optically active crystals”, Quant. Electron. 39, 73–78 (2009). 6. C. Vena, C. Versace, G. Strangi, and R. Bartolino, “Light depolarization by non-uniform polarization distribution over a beam cross section”, J. Opt. A: Pure Appl. Opt. 11, 125704–10 (2009). 7. J. C. G. de Sande, G. Piquero, and C. Teijeiro, “Polarization changes at Lyot depolarizer output for different types of input beams”, J. Opt. Soc. Am. A 29, 278-284 (2012). 8. F. Gori, M. Santarsiero, S. Vicalvi, and R. Borghi, “Beam coherence-polarization matrix”, Pure and Appl. Opt. 7, 941–951 (1998). 9. F. Gori, M. Santarsiero, R. Borghi, and G. Guattari, “The irradiance of partially polarized beams in a scalar treatment”, Opt. Commun. 163, 159–163 (1999). 10. G. P. Agrawal and E. Wolf, “Propagation-induced polarization changes in partially coherent optical beams”, J. Opt. Soc. Am. A 17, 2019–2023 (2000). 11. E. Wolf, “Unified theory of coherence and polarization of random electromagnetic beams”, Phys. Lett. A 312, 263–267 (2003). 12. F. Gori, M. Santarsiero, R. Borghi, and E. Wolf, “Effects of coherence on the degree of polarization in a Young interference pattern”, Opt. Lett. 31, 688–690 (2006). 13. M. Salem and E. Wolf “Coherence-induced polarization changes in light beams”, Opt. Lett. 33, 1180–1182 (2008). 14. T. D. Visser, D. Kuebel, M. Lahiri, T. Shirai, and E. Wolf, “Unpolarized light beams with different coherence properties”, J. Mod. Opt. 56, 1369–1374 (2009). 15. F. Gori, J. Tervo, and J. Turunen, “Correlation matrices of completely unpolarized beams”, Opt. Lett. 34, 1447–1449 (2009). 16. R. Martínez-Herrero and P. M. Mejías, “On the propagation of random electromagnetic fields with positionindependent stochastic behavior”, Opt. Commun. 283, 4467-4469 (2010). 17. H. Lotem and U. Taor, “Low-loss bireflectant (double reflection) polarization prism”, Appl. Opt. 25, 1271–1273 (1985). 18. L. V. Alekseeva, I. V. Povkh, V. I. Stroganov, B. I. Kidyarov, and P. G. Pasko, “Four-ray splitting in optical crystals”, J. Opt. Technol. 39, 441–443 (2002). 19. V. Kuznetsov, D. Faleiev, E. Savin, and V. Lebedev, “Crystal-based device for combining light beams”, Opt. Lett. 34, 2856–2857 (2009). 20. E. Wolf, Introduction to the Theory of Coherence and Polarization of Light (Cambridge University Press, Cambridge, 2007). 21. S. C.McClain, L.W. Hillman, and R. A. Chipman, “Polarization ray tracing in anisotropic optically active media. II. Theory and physics”, J. Opt. Soc. Am. A 10, 2383–2393 (1993). 22. M. Born and E. Wolf, Principles of Optics (Cambridge U. Press, 7th expanded, Cambridge, 1999). 23. F. Gori, “Measuring Stokes parameters by means of a polarization grating”, Opt. Lett. 24, 584–586 (1999). 24. G. Piquero, R. Borghi, and M. Santarsiero, “Gaussian Schell-model beams propagating through polarization gratings”, J. Opt. Soc. Am. A 18, 1399–1405 (2001). 25. H. F. Talbot, “Facts relating to optical science”, Phil. Mag. 9, 401–407 (1836). 26. V. Arrizón, E. Tepichin, M. Ortíz-Gutiérrez, and A.W. Lohmann”,Fresnel diffraction at l/4 of the Talbot distance of an anisotropic grating”, Opt. Commun. 127, 171-175 (1996). 27. J. Tervo and J. Turunen, “Transverse and longitudinal periodicities in fields produced by polarization gratings”, Opt. Commun. 190, 51-57 (2001). 28. Z. Bomzon, A. Niv, G. Biener, V. Kleiner, and E. Hasman, “Polarization Talbot self-imaging with computer generated, space-variant subwavelength dielectric gratings”, Appl. Opt. 41, 5218–5222 (2002). 29. S. C.McClain, L.W. Hillman, and R. A. Chipman, “Polarization ray tracing in anisotropic optically active media. I. Algorithms”, J. Opt. Soc. Am. A 10, 2371–2382 (1993). 30. Z. Zhang and H. J. Caufield, “Reflection and refraction by interfaces of uniaxial crystals”, Opt. & Laser Technol. 28, 549-553 (1996). 31. G. Ghosh, “Dispersion-equation coefficients for the refractive index and birefringence of calcite and quartz crystals”, Opt. Commun. 163, 95–102 (1999).
dspace.entity.typePublication
relation.isAuthorOfPublication3a400653-91df-40bb-8891-03df312fea56
relation.isAuthorOfPublication.latestForDiscovery3a400653-91df-40bb-8891-03df312fea56

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
PiqueroG01libre.pdf
Size:
1.5 MB
Format:
Adobe Portable Document Format

Collections