Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Tubular micro- and nanostructures of TCO materials grown by a vapor-solid method

dc.contributor.authorGarcía Tecedor, Miguel
dc.contributor.authorPrado Hurtado, Félix del
dc.contributor.authorBueno, Carlos
dc.contributor.authorVásquez, G. Cristian
dc.contributor.authorBartolomé Vílchez, Javier
dc.contributor.authorMaestre Varea, David
dc.contributor.authorDíaz, Tomás
dc.contributor.authorCremades Rodríguez, Ana Isabel
dc.contributor.authorPiqueras De Noriega, Francisco Javier
dc.date.accessioned2023-06-18T06:55:17Z
dc.date.available2023-06-18T06:55:17Z
dc.date.issued2016
dc.description© 2016 David Maestre, et al., licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0). This work was supported by UCM-Banco Santander, program GR3/14 and MINECO (Project Nos. MAT 2012-31959, MAT 2015-65274-R and Consolider Ingenio CSD 2009-00013).
dc.description.abstractMicrotubes and rods with nanopipes of transparent conductive oxides (TCO), such as SnO_2, TiO_2, ZnO and In_2O_3, have been fabricated following a vapor-solid method which avoids the use of catalyst or templates. The morphology of the as-grown tubular structures varies as a function of the precursor powder and the parameters employed during the thermal treatments carried out under a controlled argon flow. These materials have been also doped with different elements of technological interest (Cr, Er, Li, Zn, Sn). Energy Dispersive X-ray Spectroscopy (EDS) measurements show that the concentration of the dopants achieved by the vapor-solid method ranges from 0.5 to _3 at.%. Luminescence of the tubes has been analyzed, with special attention paid to the influence of the dopants on their optical properties. In this work, we summarize and discuss some of the processes involved not only in the anisotropic growth of these hollow micro and nanostructures, but also in their doping.
dc.description.departmentDepto. de Física de Materiales
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Economía y Competitividad (MINECO)
dc.description.sponsorshipUniversidad Complutense de Madrid (UCM)
dc.description.sponsorshipBanco Santander Central Hispano (BSCH)
dc.description.sponsorshipActividad Investigadora CONSOLIDER - INGENIO (MINECO)
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/38918
dc.identifier.doi10.3934/matersci.2016.2.434
dc.identifier.issn2372-0468
dc.identifier.officialurlhttp://dx.doi.org/10.3934/matersci.2016.2.434
dc.identifier.relatedurlhttp://www.aimspress.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/24586
dc.issue.number2
dc.journal.titleAIMS Materials Science
dc.language.isoeng
dc.page.final447
dc.page.initial434
dc.publisherAmerican Institute of Materials Science (AIMS)
dc.relation.projectIDMAT 2012-31959
dc.relation.projectIDMAT 2015-65274-R
dc.relation.projectIDGR3/14
dc.relation.projectIDCSD 2009-00013
dc.rightsAtribución 3.0 España
dc.rights.accessRightsopen access
dc.rights.urihttps://creativecommons.org/licenses/by/3.0/es/
dc.subject.cdu538.9
dc.subject.keywordTransmission electron-microscopy
dc.subject.keywordSintered tin oxide
dc.subject.keywordLuminescence properties
dc.subject.keywordControllable synthesis
dc.subject.keywordNanowire growth
dc.subject.keywordIn2o3 nanocubes
dc.subject.keywordSnO_2
dc.subject.keywordCathodoluminescence
dc.subject.keywordNanoribbons fabrication
dc.subject.ucmFísica de materiales
dc.titleTubular micro- and nanostructures of TCO materials grown by a vapor-solid method
dc.typejournal article
dc.volume.number3
dcterms.references1. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354: 56-58. 2. Rivaldo-Gómez CM, Cabrera-Pasca GA, Zuniga A, et al. (2015) Hierarchically structured nanowires on and nanosticks in ZnO microtubes. Sci Rep 5: 15128. 3. Wang S, He Y, Liu X, et al. (2011) Large scale synthesis of tungsten single crystal microtubes via vapor-deposition process. J Cryst Growth 316: 137-144. 4. Eustache E, Tilmant P, Morgenroth L, et al. (2014) Silicon-microtube scaffold decorated with anatase TiO2 as a negative electrode for a 3D Lithium-Ion Microbattery. Adv Energy Mater 4: 1301612. 5. Lang L, Xu Z (2013) Controllable synthesis of porous alpha-Fe2O3 microtube and tube in tube by non coaxial electrospinning. Chem Lett 42: 750-752. 6. Wen Z, Wang Q, Zhang Q, et al. (2007) In situ growth of mesoporous SnO2 on multiwalled carbon nanotubes: a novel composite with porous-tube structure as anode for Lithium batteries. Adv Funct Mater 17: 2772-2778. 7. Bae C,Yoo H, Kim S, et al. (2008) Template-directed synthesis of oxide nanotubes: fabrication, characterization, and applications. Chem Mater 20: 756-767. 8. Maestre D, Cremades A, Piqueras J (2005) Growth and luminescence properties of micro- and nanotubes in sintered tin oxide. J Appl Phys 97: 044316. 9. Vásquez C, Peche-Herrero A, Maestre D, et al. (2013) Cr doped titania microtubes and microrods synthesized by a vapor-solid method. Cryst Eng Comm 15: 5490-5495. 10. Maestre D, Haeussler D, Cremades, et al. (2011) Nanopipes in In2O3 nanorods grown by a thermal treatment. Cryst Growth Des 11: 1117-1121.
dspace.entity.typePublication
relation.isAuthorOfPublication584d700c-79ff-4e20-a35d-519d0958238e
relation.isAuthorOfPublication43cbf291-2f80-4902-8837-ea2a9ffaa702
relation.isAuthorOfPublicationda0d631e-edbf-434e-8bfd-d31fb2921840
relation.isAuthorOfPublication68dabfe9-5aec-4207-bf8a-0851f2e37e2c
relation.isAuthorOfPublication.latestForDiscovery584d700c-79ff-4e20-a35d-519d0958238e

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
PiquerasJ329libre+CC.pdf
Size:
1.17 MB
Format:
Adobe Portable Document Format

Collections