Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Thermal conductivity of carbon nanotubes and graphene in epoxy nanofluids and nanocomposites

dc.contributor.authorMartín Gallego, Mario
dc.contributor.authorVerdejo, Raquel
dc.contributor.authorKhayet Souhaimi, Mohamed
dc.contributor.authorOrtiz De Zárate Leira, José María
dc.contributor.authorEssalhi, Mohamed
dc.contributor.authorLópez Manchado, Miguel Ángel
dc.date.accessioned2023-06-20T03:41:37Z
dc.date.available2023-06-20T03:41:37Z
dc.date.issued2011-12-01
dc.description© 2011 Martín Gallego et al; licensee Springer. The work was supported by the Spanish Ministry of Science and Innovation (MICINN) under project MAT 2010-18749. MMG thanks the CSIC for a JAE-Pre grant.
dc.description.abstractWe employed an easy and direct method to measure the thermal conductivity of epoxy in the liquid (nanofluid) and solid (nanocomposite) states using both rodlike and platelet-like carbon-based nanostructures. Comparing the experimental results with the theoretical model, an anomalous enhancement was obtained with multiwall carbon nanotubes, probably due to their layered structure and lowest surface resistance. Puzzling results for functionalized graphene sheet nanocomposites suggest that phonon coupling of the vibrational modes of the graphene and of the polymeric matrix plays a dominant role on the thermal conductivities of the liquid and solid states.
dc.description.departmentDepto. de Estructura de la Materia, Física Térmica y Electrónica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipSpanish Ministry of Science and Innovation (MICINN)
dc.description.sponsorshipCSIC
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/26059
dc.identifier.doi10.1186/1556-276X-6-610
dc.identifier.issn1931-7573
dc.identifier.officialurlhttp://dx.doi.org/10.1186/1556-276X-6-610
dc.identifier.relatedurlhttp://www.nanoscalereslett.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/44259
dc.journal.titleNanoscale research letters
dc.language.isoeng
dc.publisherSpringer
dc.relation.projectIDMAT 2010-18749
dc.rightsAtribución 3.0 España
dc.rights.accessRightsopen access
dc.rights.urihttps://creativecommons.org/licenses/by/3.0/es/
dc.subject.cdu536
dc.subject.keywordElastic properties
dc.subject.keywordHeat-flow
dc.subject.keywordComposites
dc.subject.keywordSuspensions
dc.subject.keywordSystems
dc.subject.ucmTermodinámica
dc.subject.unesco2213 Termodinámica
dc.titleThermal conductivity of carbon nanotubes and graphene in epoxy nanofluids and nanocomposites
dc.typejournal article
dc.volume.number6
dcterms.references1. Han Z, Fina A: Thermal conductivity of carbon nanotubes and their polymer nanocomposites: a review. Prog Polym Sci 2011, 36:914-944. 2. Berber S, Kwon YK, Tománek D: Unusually high thermal conductivity of carbon nanotubes. Phys Rev Lett 2000, 84:4613-4616. 3. Hone J, Batlogg B, Benes Z, Johnson AT, Fischer JE: Quantized phonon spectrum of single-wall carbon nanotubes. Science 2000, 289:1730-1733. 4. Allaoui A, Bai S, Cheng HM, Bai JB: Mechanical and electrical properties of a MWNT/epoxy composite. Compos Sci Technol 2002, 62:1993-1998. 5. Kirkpatrick S: Percolation and conduction. Rev Mod Phys 1973, 45:574-588. 6. Shenogina N, Shenogin S, Xue L, Keblinski P: On the lack of thermal percolation in carbon nanotube composites. Appl Phys Lett 2005, 87:133106. 7. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA: Electric field effect in atomically thin carbon films. Science 2004, 306:666-669. 8. Novoselov KS, Geim AK, Morozov SV, Jiang D, Katsnelson MI, Grigorieva IV, Firsov AA: Two-dimensional gas of massless Dirac fermions in graphene. Nature 2005, 438:197-200. 9. Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau CN: Superior thermal conductivity of single-layer graphene. Nano Lett 2008, 8:902-907. 10. Du X, Skachko I, Barker A, Andrei EY: Approaching ballistic transport in suspended graphene. Nature Nanotechnol 2008, 3:491-495. 11. Lee C, Wei X, Kysar JW, Hone J: Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 2008, 321:385-388. 12. Kim H, Abdala AA, Macosko CW: Graphene/polymer nanocomposites. Macromolecules 2010, 43:6515-6530. 13. Verdejo R, Bernal MM, Romasanta LJ, López Manchado MA: Graphene filled polymer nanocomposites. J Mater Chem 2011, 21:3301-3310. 14. Eatsman JA, Choi SUS, Li S, Yu W, Thompson LJ: Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Appl Phys Lett 2001, 78:718-720. 15. Kleinstreuer C, Feng Y: Experimental and theoretical studies of nanofluid thermal conductivity enhancement: a review. Nanoscale Res Lett 2011, 6:439. 16. Verdejo R, Lamoriniere S, Cottam B, Bismarck A, Shaffer MSP: Removal of oxidation debris from multi-walled carbon nanotubes. Chem Commun 2007, 5:513-515. 17. Verdejo R, Barroso Bujans F, Rodríguez Pérez MA, Saja JA, López Manchado MA: Functionalized graphene sheet filled silicone foam nanocomposites. J Mater Chem 2008, 18:2221-2226. 18. Pascault JP, Williams RJJ: Epoxy Polymers: New Materials and Innovations Weinheim: Wiley-VCH Verlag GmbH $ Co. KGaA; 2010. 19. Maeda T, Horie C: Phonon modes in single-wall nanotubes with a small diameter. Physica B 1999, 263-264:479-481. 20. Popov VN: Theoretical evidence T1/2 specific behavior in carbon nanotube systems. Carbon 2004, 42:991-995. 21. Li Q, Liu C, Wang X, Fan S: Measuring the thermal conductivity of individual carbon nanotubes by the Raman shift method. Nanotechnology 2009, 20:145702. 22. Mingo N, Broido DA: Carbon nanotube ballistic thermal conductance and its limits. Phys Rev Lett 2005, 95:096105-096108. 23. Dresselhaus MS, Dresselhaus G, Jorio A, Filho AGS, Saito R: Raman spectroscopy on isolated single wall carbon nanotubes. Carbon 2002, 40:2043-2061. 24. Deng F, Zheng QS, Wang LF: Effects of anisotropy, aspect ratio, and nonstraightness of carbon nanotubes on thermal conductivity of carbon nanotube composites. Appl Phys Lett 2007, 90:021914-021916. 25. Che J, Cagin T, Goddard WA: Thermal conductivity of carbon nanotubes. Nanotechnology 2000, 11:65-69. 26. Kapitza PL: The study of heat transfer in helium II. J Phys USSR 1941, 4:181-210. 27. Gojny FH, Wichmann MHG, Fiedler B, Kinloch IA, Bauhofer W, Windle AH, Schulte K: Evaluation and identification of electrical and thermal conduction mechanisms in carbon nanotube/epoxy composites. Polymer 2006, 47:2036-2045. 28. Moisala A, Li Q, Kinloch IA, Windle AH: Thermal and electrical conductivity of single- and multi-walled carbon nanotube-epoxy composites. Compos Sci Technol 2006, 66:1285-1288. 29. Konatham D, Striolo A: Thermal boundary resistance at the graphene-oil interface. Appl Phys Lett 2009, 95:163105-163107. 30. Hamilton RL, Crosser OK: Thermal conductivity of heterogeneous twocomponent systems. Ind Eng Chem Fundam 1962, 1:187-191. 31. Thostenson ET, Chou TW: On the elastic properties of carbon nanotube based composited: modelling and characterization. J Phys D: Appl Phys 2003, 36:573-582. 32. Choi SUS, Zhang ZG, Yu W, Lockwood FE, Grulke EA: Anomalous thermal conductivity enhancement in nanotube suspensions. Appl Phys Lett 2001, 79:2252-2254. 33. Peñas JRV, Ortiz de Zárate JM, Khayet M: Measurement of thermal conductivity of nanofluids by the multicurrent hot-wire method. J Appl Phys 2008, 104:044314-044321. 34. Thostenson ET, Chou T: Processing-structure-multi-functional property relationship in carbon nanotube/epoxy composites. Carbon 2006, 44:3022-3029. 35. Debelak B, Lafdi K: Use of exfoliated graphite filler to enhance polymer physical properties. Carbon 2007, 45:1727-1734. 36. Yu A, Ramesh P, Itkis PE, Bekyarova E, Haddon RC: Graphite nanoplateletepoxy composite thermal interface materials. J Phys Chem C 2007, 111:7565-7569. 37. Huxtable ST, Cahill DG, Shenogin S, Xue L, Ozisik R, Barone P, Usrey M, Strano MS, Siddons G, Shim M, Keblinski P: Interfacial heat flow in carbon nanotube suspensions. Nat Mater 2003, 2:731-734. 38. Shenogin S, Xue L, Ozisik R, Keblinski P: Role of thermal boundary resistance on the heat flow in carbon-nanotube composites. J Appl Phys 2004, 95:8136-8144.
dspace.entity.typePublication
relation.isAuthorOfPublication8e32e718-0959-4e6c-9e04-891d3d43d640
relation.isAuthorOfPublicationd2b809b1-3ba2-407e-add2-8b8251e306ba
relation.isAuthorOfPublication.latestForDiscovery8e32e718-0959-4e6c-9e04-891d3d43d640

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Khayet20.pdf
Size:
709.36 KB
Format:
Adobe Portable Document Format

Collections