Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Tuning the spin transition and carrier type in rare-earth cobaltates via compositional complexity

dc.contributor.authorZhang, Alan
dc.contributor.authorOh, Sangheon
dc.contributor.authorChoi, Byoung Ki
dc.contributor.authorRotenberg, Eli
dc.contributor.authorBrown, Timothy D.
dc.contributor.authorSpataru, Catalin D
dc.contributor.authorKinigstein, Eli
dc.contributor.authorGuo, Jinghua
dc.contributor.authorSugar, Joshua D.
dc.contributor.authorSalagre, Elena
dc.contributor.authorMascaraque Susunaga, Arantzazu
dc.contributor.authorMichel, Enrique G.
dc.contributor.authorShad, Alison C
dc.contributor.authorZhu, Jacklyn
dc.contributor.authorSuhas Kumar1
dc.contributor.authorWitman, Matthew D.
dc.contributor.authorKumar, Suhas
dc.contributor.authorTalin, A. Alec
dc.contributor.authorFuller, Elliot J.
dc.date.accessioned2024-12-03T16:41:29Z
dc.date.available2024-12-03T16:41:29Z
dc.date.issued2024
dc.descriptionDE-NA-0003525 DE-AC02-05CH11231
dc.description.abstractThere is growing interest in material candidates with properties that can be engineered beyond traditional design limits. Compositionally complex oxides (CCO), often called high entropy oxides, are excellent candidates, wherein a lattice site shares more than four cations, forming single-phase solid solutions with unique properties. However, the nature of compositional complexity in dictating properties remains unclear, with characteristics that are difficult to calculate from first principles. Here, compositional complexity is demonstrated as a tunable parameter in a spin-transition oxide semiconductor La1− x(Nd, Sm, Gd, Y)x/4CoO3, by varying the population x of rare earth cations over 0.00≤ x≤ 0.80. Across the series, increasing complexity is revealed to systematically improve crystallinity, increase the amount of electron versus hole carriers, and tune the spin transition temperature and on-off ratio. At high a population (x = 0.8), Seebeck measurements indicate a crossover from hole-majority to electron-majority conduction without the introduction of conventional electron donors, and tunable complexity is proposed as new method to dope semiconductors. First principles calculations combined with angle resolved photoemission reveal an unconventional doping mechanism of lattice distortions leading to asymmetric hole localization over electrons. Thus, tunable complexity is demonstrated as a facile knob to improve crystallinity, tune electronic transitions, and to dope semiconductors beyond traditional means.
dc.description.departmentDepto. de Física de Materiales
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Ciencia e Innovación (España)
dc.description.sponsorshipEuropean Commission
dc.description.sponsorshipAgencia Estatatal de Investigación (España)
dc.description.sponsorshipDepartment of Energy (United States)
dc.description.statuspub
dc.identifier.citationA. Zhang, S. Oh, B. K. Choi, E. Rotenberg, T. D. Brown, C. D. Spataru, E. Kinigstein, J. Guo, J. D. Sugar, E. Salagre, A. Mascaraque, E. G. Michel, A. C. Shad, J. Zhu, M. D. Witman, S. Kumar, A. A. Talin, E. J. Fuller, Advanced Materials 2024, 36, 2406885.
dc.identifier.doi10.1002/adma.202406885
dc.identifier.essn1521-4095
dc.identifier.issn0935-9648
dc.identifier.officialurlhttps://doi.org//10.1002/adma.202406885
dc.identifier.relatedurlhttps://onlinelibrary.wiley.com/doi/10.1002/adma.202406885
dc.identifier.urihttps://hdl.handle.net/20.500.14352/111998
dc.issue.number47
dc.journal.titleAdvanced Materials
dc.language.isoeng
dc.page.final2406885-27
dc.page.initial2406885-1
dc.publisherWiley
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI//PID2021-123295NB-I00
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-117024GB-C43/ES/NUEVOS MATERIALES PARA UNA CONMUTACION MAGNETICA EFICIENTE EN LA NANOESCALA /
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI//TED2021-130957B-C53
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/CEX2018-000805-M
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/CEX2023-001316-M
dc.rights.accessRightsopen access
dc.subject.cdu538.9
dc.subject.keywordOxide
dc.subject.keywordHigh entropy
dc.subject.keywordCobaltate
dc.subject.keywordSpin transition
dc.subject.ucmFísica de materiales
dc.subject.ucmFísica del estado sólido
dc.subject.unesco22 Física
dc.subject.unesco23 Química
dc.titleTuning the spin transition and carrier type in rare-earth cobaltates via compositional complexity
dc.typejournal article
dc.type.hasVersionAO
dc.volume.number36
dspace.entity.typePublication
relation.isAuthorOfPublication9d984e3c-69fb-476e-af0b-5134c4d26028
relation.isAuthorOfPublication.latestForDiscovery9d984e3c-69fb-476e-af0b-5134c4d26028

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Adv_Mat_36_2406885_preprint_2024.pdf
Size:
1.69 MB
Format:
Adobe Portable Document Format

Collections