Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Time-resolved spatial profile of TEA CO_2 laser pulses: influence of the gas mixture and intracavity apertures

dc.contributor.authorSerna Galán, Julio
dc.contributor.authorEncinas Sanz, Fernando
dc.contributor.authorMartínez Herrero, María Rosario
dc.contributor.authorMartín Mejías, Pedro
dc.date.accessioned2023-06-20T18:46:34Z
dc.date.available2023-06-20T18:46:34Z
dc.date.issued2001-07
dc.description© 2001 Optical Society of America. This work was supported by the Comisión Interministerial de Ciencia y Tecnología of Spain under project PB97-0295.
dc.description.abstractThe evolution of the intensity profile of transversely excited atmospheric CO_2 laser pulses is investigated within the intensity moment formalism. The beam quality factor M_2 is used to study the mode evolution. Attention is focused on the influence of both the gas mixture (N_2:CO_2:He) and the diameter of an intracavity diaphragm placed to attenuate higher-order modes. The degree of accuracy that can be attained by approximating the laser field amplitude by means of the lower-order terms of a Hermite-Gauss expansion is also analyzed. In particular, a bound for the truncation error is given in terms of two time-resolved spatial parameters, namely the beam width and the M_2 parameter.
dc.description.departmentDepto. de Óptica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipComisión Interministerial de Ciencia y Tecnología of Spain
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/21974
dc.identifier.doi10.1364/JOSAA.18.001734
dc.identifier.issn1084-7529
dc.identifier.officialurlhttp://dx.doi.org/10.1364/JOSAA.18.001734
dc.identifier.relatedurlhttp://www.opticsinfobase.org
dc.identifier.urihttps://hdl.handle.net/20.500.14352/58582
dc.issue.number7
dc.journal.titleJournal of The Optical Society Of America A-Optics Image Science and Vision
dc.language.isoeng
dc.page.final1740
dc.page.initial1734
dc.publisherOptical Society of America
dc.relation.projectIDPB97-0295
dc.rights.accessRightsopen access
dc.subject.cdu535
dc.subject.keywordPartially Coherent Beams
dc.subject.keywordParametric Characterization
dc.subject.keywordEvolution
dc.subject.keywordCO_2-Laser
dc.subject.keywordLight
dc.subject.ucmÓptica (Física)
dc.subject.unesco2209.19 Óptica Física
dc.titleTime-resolved spatial profile of TEA CO_2 laser pulses: influence of the gas mixture and intracavity apertures
dc.typejournal article
dc.volume.number18
dcterms.references1. M. J. Bastiaans, “Wigner distribution function and its application to first-order optics,” J. Opt. Soc. Am. 69, 1710–1716 (1979). 2. S. Lavi, R. Prochaska, and E. Keren, “Generalized beam parameters and transformation laws for partially coherent light,” Appl. Opt. 27, 3696–3703 (1988). 3. R. Simon, N. Mukunda, and E. C. G. Sudarshan, “Partially coherent beams and a generalized ABCD law,” Opt. Commun. 65, 322–328 (1988). 4. A. E. Siegman, “New developments in laser resonators,” in Laser Resonators, D. A. Holmes, ed., Proc. SPIE 1224, 2–14 (1990). 5. J. Serna, R. Martínez-Herrero, and P. M. Mejías, “Parametric characterization of general partially coherent beams propagating through ABCD optical systems,” J. Opt. Soc. Am. A 8, 1094–1098 (1991). 6. H. Weber, “Propagation of higher-order intensity moments in quadratic-index media,” Opt. Quantum Electron. 24, 1027–1049 (1992). 7. ISO 11146:1999. “Lasers and laser-related equipment—Test methods for laser beam parameters—Beam widths, divergence angle and beam propagation factor,” (International Organization for Standardization, Geneva, Switzerland). 8. A. Caprara and G. C. Reali, “Time-resolved M2 of nanosecond pulses from a Q-switched variable-reflectivity-mirror Nd:YAG laser,” Opt. Lett. 17, 414–416 (1992). 9. T. Omatsu and K. Kuroda, “Time-resolved measurements of spatial coherence of a copper vapor laser using a reversal shearing interferometer,” Opt. Commun. 87, 278–286 (1992). 10. J. J. Chang, “Time-resolved beam-quality characterization of copper vapor lasers with unstable resonators,” Appl. Opt. 33, 2255–2265 (1994). 11. P. M. Mejías and R. Martínez-Herrero, “Time-resolved spatial parametric characterization of pulsed light beams,” Opt. Lett. 20, 660–662 (1995). 12. C. Palma, C. Panzera, M. R. Perrone, G. De Nunzio, and A. Mascello, “Parameters evolution of laser beams with quite general transverse intensity profile,” IEEE J. Quantum Electron. 33, 2178–2187 (1997). 13. C. Martínez, F. Encinas-Sanz, J. Serna, P. M. Mejías, and R. Martínez-Herrero, “On the parametric characterization of the transversal spatial structure of laser pulses,” Opt. Commun. 139, 299–305 (1997). 14. F. Encinas-Sanz, J. Serna, C. Martínez, R. Martínez Herrero, and P. M. Mejías, “Time-varying beam quality factor and mode evolution in TEA CO2 laser pulses,” IEEE J. Quantum Electron. 34, 1835–1838 (1998). 15. A. E. Siegman, “Defining the effective radius of curvature for a nonideal optical beam,” IEEE J. Quantum Electron. 27, 1146–1148 (1991). 16. R. Borghi, F. Gori, M. Santarsiero, and S. Vicalvi, “Shapeinvariance error for some classes of coherent light beams,” in 4th Workshop on Laser Beam and Optics Characterization, A. Giesen and M. Morin, eds. (VDI-Technologiezentrum, Düsseldorf, 1997), p. 106–117. 17. P. M. Mejías and R. Martínez-Herrero, “Truncation error of the Laguerre–Gauss expansion of axially symmetric beams in terms of second-order intensity moments,” Pure Appl. Opt. 7, 1231–1236 (1998). 18. F. Encinas-Sanz, O. G. Calderón, R. Gutiérrez-Castrejón, and J. M. Guerra, “Measurement of the spatiotemporal dynamics of simple transverse patterns in a pulsed transversely excited atmospheric CO_2 laser,” Phys. Rev. A 59, 4764–4772 (1999). 19. I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series and Products (Academic, San Diego, Calif., 1980). 20. R. Martínez-Herrero and P. M. Mejías, “Expansion of the cross spectral density function of general fields and its application to beam characterization,” Opt. Commun. 94, 197–202 (1992).
dspace.entity.typePublication
relation.isAuthorOfPublication076e3bc6-0918-48a4-a920-6fe13919d721
relation.isAuthorOfPublicationbf0820f8-41cd-4965-a5c6-2c97369298ee
relation.isAuthorOfPublication091ff09c-6e33-45de-86f0-2ffc6d26a4a0
relation.isAuthorOfPublicationbdc93780-30f2-4140-85c4-3babeb27ec70
relation.isAuthorOfPublication.latestForDiscovery076e3bc6-0918-48a4-a920-6fe13919d721

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
SernaJulio08libre.pdf
Size:
365.87 KB
Format:
Adobe Portable Document Format

Collections