Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Uniqueness and asymptotic-behavior for some scalar convection-diffusion equations

dc.contributor.authorCarpio Rodríguez, Ana María
dc.date.accessioned2023-06-20T16:51:05Z
dc.date.available2023-06-20T16:51:05Z
dc.date.issued1994
dc.description.abstractWe prove the uniqueness of the fundamental entropy solutions u(x, y, t) of the equation: (R) u(t) - DELTA(x) u + partial derivative(y) (Absolute value of u q-1 u) = 0, R(n-1) x R x R+ when 1 < q < 1+(2/(n - 1)) if n > 2 and 1 < q less-than-or-equal-to 2 if n = 1, 2. As a consequence, we prove that the large time behaviour of solutions to the equation (CD) u(t) - DELTA(x) u - partial derivative(yy)2 u + partial derivative(y) (Absolute value of u q-1 u) = 0, R(n-1) x R x R+ with initial data u0 is-an-element-of L1 (R(n)) is given by the fundamental solutions of (R) with mass integral u0 when 1 < q < 1 + (1 /n). This completes a result by Escobedo, Vazquez and Zuazua for positive solutions.en
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/15188
dc.identifier.issn0764-4442
dc.identifier.urihttps://hdl.handle.net/20.500.14352/57229
dc.issue.number1
dc.journal.titleComptes Rendus de l'Académie des Sciences. Série I. Mathématique
dc.page.final56
dc.page.initial51
dc.publisherElsevier
dc.rights.accessRightsmetadata only access
dc.subject.cdu517.9
dc.subject.ucmEcuaciones diferenciales
dc.subject.unesco1202.07 Ecuaciones en Diferencias
dc.titleUniqueness and asymptotic-behavior for some scalar convection-diffusion equationsen
dc.typejournal article
dc.volume.number319
dspace.entity.typePublication
relation.isAuthorOfPublicationf301b87d-970b-4da8-9373-fef22632392a
relation.isAuthorOfPublication.latestForDiscoveryf301b87d-970b-4da8-9373-fef22632392a

Download

Collections