Uniqueness and asymptotic-behavior for some scalar convection-diffusion equations
dc.contributor.author | Carpio Rodríguez, Ana María | |
dc.date.accessioned | 2023-06-20T16:51:05Z | |
dc.date.available | 2023-06-20T16:51:05Z | |
dc.date.issued | 1994 | |
dc.description.abstract | We prove the uniqueness of the fundamental entropy solutions u(x, y, t) of the equation: (R) u(t) - DELTA(x) u + partial derivative(y) (Absolute value of u q-1 u) = 0, R(n-1) x R x R+ when 1 < q < 1+(2/(n - 1)) if n > 2 and 1 < q less-than-or-equal-to 2 if n = 1, 2. As a consequence, we prove that the large time behaviour of solutions to the equation (CD) u(t) - DELTA(x) u - partial derivative(yy)2 u + partial derivative(y) (Absolute value of u q-1 u) = 0, R(n-1) x R x R+ with initial data u0 is-an-element-of L1 (R(n)) is given by the fundamental solutions of (R) with mass integral u0 when 1 < q < 1 + (1 /n). This completes a result by Escobedo, Vazquez and Zuazua for positive solutions. | en |
dc.description.department | Depto. de Análisis Matemático y Matemática Aplicada | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/15188 | |
dc.identifier.issn | 0764-4442 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/57229 | |
dc.issue.number | 1 | |
dc.journal.title | Comptes Rendus de l'Académie des Sciences. Série I. Mathématique | |
dc.page.final | 56 | |
dc.page.initial | 51 | |
dc.publisher | Elsevier | |
dc.rights.accessRights | metadata only access | |
dc.subject.cdu | 517.9 | |
dc.subject.ucm | Ecuaciones diferenciales | |
dc.subject.unesco | 1202.07 Ecuaciones en Diferencias | |
dc.title | Uniqueness and asymptotic-behavior for some scalar convection-diffusion equations | en |
dc.type | journal article | |
dc.volume.number | 319 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | f301b87d-970b-4da8-9373-fef22632392a | |
relation.isAuthorOfPublication.latestForDiscovery | f301b87d-970b-4da8-9373-fef22632392a |