Plasmonic control of nonlinear two-photon absorption in graphene nanocomposites

dc.contributor.authorCox, Joel D.
dc.contributor.authorSingh, Mahi R.
dc.contributor.authorAntón Revilla, Miguel Ángel
dc.contributor.authorCarreño Sánchez, Fernando
dc.date.accessioned2023-06-19T14:54:06Z
dc.date.available2023-06-19T14:54:06Z
dc.date.issued2013-08-29
dc.description.abstractNonlinear two-photon absorption in a quantum dot–graphene nanoflake nanocomposite system has been investigated. An external laser field is applied to the nanocomposite to simultaneously observe two-photon processes in the quantum dot and excite localized surface plasmons in the graphene nanodisk. This resonance condition can be achieved by tuning the plasmon resonance frequency in the graphene nanoflake via electrostatic gating. It is found that the strong local field of the graphene plasmons can enhance and control nonlinear optical processes in the quantum dot. Specifically, we show that the two-photon absorption coefficient in the quantum dot can be switched between single- and double-peaked spectra by modifying the graphene–quantum dot separation. Two-photon processes in the quantum dot can also be switched on or off by slightly changing the gate voltage applied to the graphene. Our findings indicate that this system can be used for nonlinear optical applications such as all-optical switching, biosensing and signal processing.
dc.description.departmentSección Deptal. de Óptica (Óptica)
dc.description.facultyFac. de Óptica y Optometría
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Ciencia e Innovación (MCINN)
dc.description.sponsorshipNatural Sciences and Engineering Research Council (NSERC) of Canada
dc.description.sponsorshipOntario Graduate Scholarship program
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/30276
dc.identifier.doi10.1088/0953-8984/25/38/385302
dc.identifier.issn0953-8984
dc.identifier.officialurlhttp://dx.doi.org/10.1088/0953-8984/25/38/385302
dc.identifier.relatedurlhttp://iopscience.iop.org/0953-8984/25/38/385302/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/34657
dc.issue.number38
dc.journal.titleJournal of Physics: condensed matter
dc.language.isoeng
dc.page.initial385302 (9pp)
dc.publisherIOP Publishing Ltd.
dc.relation.projectIDProject no. FIS2010-22082
dc.rights.accessRightsopen access
dc.subject.cdu535
dc.subject.cdu535.14
dc.subject.cdu535.374
dc.subject.cdu533.951
dc.subject.keywordExternal laser fields
dc.subject.keywordGraphene nanocomposites
dc.subject.keywordLocalized surface plasmon
dc.subject.keywordNanocomposite systems
dc.subject.keywordNonlinear optical applications
dc.subject.keywordNonlinear optical process
dc.subject.keywordPlasmon resonance frequencies
dc.subject.keywordTwo-photon absorptions
dc.subject.keywordNonlinear Dynamics
dc.subject.keywordQuantum Dots
dc.subject.keywordStatic Electricity
dc.subject.ucmElectromagnetismo
dc.subject.ucmFísica de materiales
dc.subject.ucmÓptica (Física)
dc.subject.unesco2202 Electromagnetismo
dc.subject.unesco2209.19 Óptica Física
dc.titlePlasmonic control of nonlinear two-photon absorption in graphene nanocomposites
dc.typejournal article
dc.volume.number25
dcterms.references[1] M. Achermann, J. Phys. Chem. Lett. 1, 2837-2843 (2010). [2] M. Fu, K. Wang, H. Long, G. Yang, P. Lu, F. Hetsch, A. S. Susha, and A. L. Rogach, Appl. Phys. Lett. 100, 063117 (2012). [3] S. Xiao, H. Gong, X. Su, J. Han, Y. Han, M. Chen, and Q. Wang, J. Phys. Chem. C 111, 10185-10189 (2007). [4] X. Li, F. -J. Kao, C. -C. Chuang, and S. He, Opt. Express 18, 11335 (2010). [5] E. Shaviv and U. Banin, ACS Nano 4, 1529-1538 (2010). [6] P. M. Jais, C. von Bilderling, and A. V. Bragas, Papers in Physics 3, 030002 (2011). [7] X. Feng, Y. Chen, and D. Hou, Physica B 406, 1702-1705 (2011). [8] N. J. Durr, T. Larson, D. K. Smith, B. A. Korgel, K. Sokolov, and A. Ben-Yakar, Nano Lett. 7 941-945 (2007). [9] Y. Zhang, D. J. S. Birch, and Y. Chen, Appl. Phys. Lett. 99 103701 (2011). [10] A. Ray, Y.-E. K. Lee, G. Kim, and R. Kopelman, Small 8, 2213 (2012). [11] Z. Chen, S. Berciaud, C. Nuckolls, T. F. Heinz, and L. E. Brus, ACS Nano 4, 2964 (2010). [12] H. Dong, W. Gao, F. Yan, H. Ji, and H. Ju, Anal. Chem. 82, 5511 (2010). [13] P. Wang, T. Jiang, C. Zhu, Y. Zhai, D. Wang, and S. Dong, Nano Res. 3, 794 (2010). [14] G. Konstantatos, M. Badioli, L. Gaudreau, J. Osmond, M. Bernechea, F. P. Garcia de Arquer, F. Gatti, and F. H. L. Koppens, Nat. Nanotech. 7, 363 (2012). [15] Q. Bao and K. P. Loh, ACS Nano 3677 (2012). [16] A. N. Grigorenko, M. Polini, and K. S. Novoselov, Nat. Photon. 6, 749 (2012). [17] F. H. L. Koppens, D. E. Chang, and F. J. García de Abajo, Nano Lett. 11, 3370-3377 (2011). [18] A. Manjavacas, P. Norlander, and F. J. García de Abajo, ACS Nano 6, 1724-1731 (2012). [19] A. Manjavacas, S. Thongrattanasiri, D. E. Chang, and F. J. García de Abajo, New. J. of Phys. 14, 123020 (2012). [20] J. D. Cox, M. R. Singh, G. Gumbs, M. A. Anton, and F. Carreño, Phys. Rev. B 86, 125452 (2012). [21] M. Feng, R. Sun, H. Zhan, and Y. Chen, Nanotechnology 21, 075601 (2010). [22] Y. H. Lee, L. Polavarapu, N. Gao, P. Yuan, and Q.-H. Xu, Langmuir 28, 321-326 (2012). [23] D. Sarid and W. A. Challener, Modern introduction to surface plasmons: theory, Mathematica modeling, and applications (Cambridge; New York: Cambridge University Press, 2010). [24] B. E. Kane, Phys. Rev. B 82, 115441 (2010). [25] P. Hanarp, M. Käll, and D. S. Sutherland, J. Phys. Chem. B 107, 5768 (2003). [26] F.Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, Science 320, 206 (2008). [27] Z. Q. Li, E. A. Henriksen, Z. Jiang, Z. Hao, M. C. Martin, P. Kim, H. L. Stormer, and D. N. Basov, Nat. Phys. 4, 532 (2008). [28] P. Meystre and M. Sargent III, Elements of quantum optics, fourth edition (Springer-Verlag, Berlin Heidelberg, 9 2007). [29] D. A. Holm and M. Sargent III, Opt. Lett. 10, 405-407 (1985). [30] M. O. Scully and M. S. Zubairy, Quantum optics (Cambridge: Cambridge University Press, 1997). [31] R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic, New York, 2008). [32] T. Brunhes, P. Boucaud, S. Sauvage, F. Glotin, R. Prazeres, J.-M. Ortega, A. Lemaître, and J.-M. Gérard, Appl. Phys. Lett. 75, 835 (1999).
dspace.entity.typePublication
relation.isAuthorOfPublicationa59c3727-c018-4ce7-84d5-24f3a2f3de79
relation.isAuthorOfPublication70ad6ca8-0e1b-49d4-a046-8d693ca88c5a
relation.isAuthorOfPublication.latestForDiscoverya59c3727-c018-4ce7-84d5-24f3a2f3de79

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Plasmonic control of nonlinear.pdf
Size:
1.02 MB
Format:
Adobe Portable Document Format

Collections