Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Crossover from ionic hopping to nearly constant loss in the fast ionic conductor Li_(0.18)La_(0.61)TiO_(3)

dc.contributor.authorRivera Calzada, Alberto Carlos
dc.contributor.authorLeón Yebra, Carlos
dc.contributor.authorSanz, J.
dc.contributor.authorSantamaría Sánchez-Barriga, Jacobo
dc.contributor.authorMoynihan, C. T.
dc.contributor.authorNgai, K. L.
dc.date.accessioned2023-06-20T20:07:41Z
dc.date.available2023-06-20T20:07:41Z
dc.date.issued2002-06-10
dc.description© 2002 The American Physical Society. We thank Dr. A. Várez for sample preparation. C. L. thanks Professor J. Ross Macdonald for extensive and valuable discussions. Financial support from CICYT Grant No. MAT98-1053-C04 is acknowledged. K.L.N. was supported by the ONR.
dc.description.abstractElectrical conductivity measurements of the fast ionic conductor Li_(0.18)La_(0.61)TiO_(3) have been conducted at temperatures ranging from 8 to 300 K and frequencies between 20 Hz and 5 MHz. A detailed analysis of the ac conductivity shows the existence of a crossover between two different regimes. At high temperatures and/or low frequencies correlated ion hopping is responsible for a power-law frequency dependent and thermally activated ac conductivity. On the other hand, at sufficiently low temperatures and/or high frequencies, the ions do not have enough thermal energy or time to hop between neighboring sites, and remain caged. The ac conductivity is then characterized by a linear frequency dependence (i.e., the equivalent of a nearly constant loss) and by a weak exponential temperature dependence of the form exp(T/T_(0)). A crossover between the two regimes is found, which is thermally activated with an activation energy E50.17 eV, significantly lower than that observed for the dc conductivity, E_(δ)50.4 eV. From this result, it is shown that the so-called "augmented Jonscher expression" fails to describe the ac conductivity in the whole frequency and temperature ranges. All these findings suggest that the nearly constant loss originates from electrical loss occurring during the time regime while the ion is still confined in the potential-energy minimum. Further, it is proposed that the loss mechanism involves some type of process where the potential-energy minimum relaxes in time on a time scale much shorter than the ionic hopping time scale. At longer times, as soon as the ion has significant probability of being thermally activated out of the potential well, the nearly constant loss terminates and correlated ion hopping becomes the only contribution to the ac conductivity.
dc.description.departmentDepto. de Estructura de la Materia, Física Térmica y Electrónica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipCICYT
dc.description.sponsorshipONR
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/31079
dc.identifier.doi10.1103/PhysRevB.65.224302
dc.identifier.issn1098-0121
dc.identifier.officialurlhttp://dx.doi.org/10.1103/PhysRevB.65.224302
dc.identifier.relatedurlhttp://journals.aps.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/59624
dc.issue.number22
dc.journal.titlePhysical review B
dc.language.isoeng
dc.publisherAmerican Physical Society
dc.relation.projectIDMAT98-1053-C04
dc.rights.accessRightsopen access
dc.subject.cdu537
dc.subject.keywordNon-arrheniun conductivity
dc.subject.keywordElectrical relaxation
dc.subject.keywordDisordered solids
dc.subject.keywordAC conductivity
dc.subject.keywordGlasses
dc.subject.keywordDynamics
dc.subject.keywordBehavior
dc.subject.keywordSpectra
dc.subject.keywordMelts
dc.subject.keywordUniversality.
dc.subject.ucmElectricidad
dc.subject.ucmElectrónica (Física)
dc.subject.unesco2202.03 Electricidad
dc.titleCrossover from ionic hopping to nearly constant loss in the fast ionic conductor Li_(0.18)La_(0.61)TiO_(3)
dc.typejournal article
dc.volume.number65
dcterms.references1) J. Wong, C. A. Angell, Glass Structure by Spectroscopy (Dekker, New York, 1976). 2) W. K. Lee, J. F. Liu, A. S. Nowick, Phys. Rev. Lett., 67, 1559 (1991). 3) K. L. Ngai, J. Chem. Phys., 110, 10 576 (1999). 4) C. A. Angell, Chem. Rev., 90, 523 (1990). 5) See the collection of papers in J. Non-Cryst. Solids, 131-133 (1991) --- 172-174 (1994) --- 235-238 (1998). 6) K. L. Ngai, J. Non-Cryst. Solids, 203, 232 (1996). 7) B. Roling, A. Happe, K. Funke, M. D. Ingram, Phys. Rev. Lett., 78, 2160 (1997). 8) P. Lunkenheimer, A. Pimenov, A. Loidl, Phys. Rev. Lett., 78, 2995 (1997). 9) K. L. Ngai, C. T. Moynihan, MRS Bull., 23, 51 (1998). 10) D. L. Sidebottom, Phys. Rev. Lett., 82, 3653 (1999). 11) K. L. Ngai, C. León, Phys. Rev. B, 60, 9396 (1999). 12) A. Ghosh, A. Pan, Phys. Rev. Lett., 84, 2188 (2000). 13) J. C. Dyre, T. B. Schroeder, Rev. Mod. Phys., 72, 873 (2000). 14) J. R. Macdonald, Phys. Rev. B, 63, 052, 205 (2001). 15) A. K. Jonscher, Dielectric Relaxation in Solids (Chelsea Dielectric Press, London, 1983). 16) F. S. Howell, R. A. Bose, P. B. Macedo, C. T. Moynihan, J. Phys. Chem., 78, 639 (1974). 17) K. L. Ngai, Comments Solid State Phys., 9, 127 (1979). 18) K. L. Ngai, Phys. Rev. B, 48, 13, 481 (1993). 19) K. Funke, Prog. Solid State Chem., 22, 111 (1993). 20) J. C. Dyre, J. Appl. Phys., 64, 2456 (1988). 21) C. Cramer, K. Funke, T. Saatkamp, Philos. Mag. B, 71, 701 (1995). 22) K. L. Ngai, H. Jain, O. Kanert, J. Non-Cryst. Solids, 222, 383 (1997). 23) C. León, M. L. Lucía, and J. Santamaría, Phys. Rev. B, 55, 882 (1997). 24) A. S. Nowick, A. V. Vaysleb, W. Liu, Solid State Ionics, 105, 121 (1998). 25) H. Jain, X. Lu, J. Non-Cryst. Solids, 196, 285 (1996). 26) J. R. Macdonald, J. Chem. Phys., 115, 6192 (2001). 27) C. León, A. Rivera, A. Várez, J. Sanz, J. Santamaría, K. L. Ngai, Phys. Rev. Lett., 86, 1279 (2001). 28) Y. Inaguma, L. Chen, M. Itoh, T. Nakamura, T. Uchida, M. Ikuta, M. Wakihara, Solid State Commun., 86, 689 (1993). 29) C. León, M. L. Lucía, J. Santamaría, M. A. Paris, J. Sanz, A. Várez, Phys. Rev. B, 54, 184 (1996). 30) C. León, J. Santamaría, M. A. Paris, J. Sanz, J. Ibarra, L. M. Torres, Phys. Rev. B, 56, 5302 (1997). 31) J. A. Alonso, J. Sanz, J. Santamaría, C. León, A. Várez, M. T. Fernández, Angew. Chem. Int. Ed. Engl., 39, 619 (2000). 32) J. Kincs, S. W. Martin, Phys. Rev. Lett., 76, 70 (1996). 33) K. L. Ngai, A. K. Rizos, Phys. Rev. Lett., 76, 1296 (1996). 34) P. Maass, M. Meyer, A. Bunde, W. Dieterich, Phys. Rev. Lett., 77, 1528 (1996). 35) K. L. Ngai, G. N. Greaves, C. T. Moynihan, Phys. Rev. Lett., 80, 1018 (1998). 36) B. Vessal, A. Amini, B. Fincham, C. R. A. Catlow, Philos. Mag. B, 60, 753 (1989). 37) W. Smith, W. Gillen, G. N. Greaves, J. Chem. Phys., 103, 3091 (1995). 38) J. Habasaki, I. Okada, Y. Hiwatari, Phys. Rev. B, 55, 6309 (1997). 39) M. Lax, Rev. Mod. Phys., 32, 25 (1960). 40) K. L. Ngai, R. W. Rendell, C. León, J. Non-Cryst. Solids, (to be published).
dspace.entity.typePublication
relation.isAuthorOfPublication65d45b0a-357f-4ec4-9f97-0ffd3e1cbdcc
relation.isAuthorOfPublication213f0e33-39f1-4f27-a134-440d5d16a07c
relation.isAuthorOfPublication75fafcfc-6c46-44ea-b87a-52152436d1f7
relation.isAuthorOfPublication.latestForDiscovery65d45b0a-357f-4ec4-9f97-0ffd3e1cbdcc

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
LeonC92libre.pdf
Size:
82.21 KB
Format:
Adobe Portable Document Format

Collections