Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Realized Stochastic Volatility Models with Generalized Gegenbauer Long Memory

dc.contributor.authorAsai, Manabu
dc.contributor.authorMcAleer, Michael
dc.contributor.authorPeiris, Shelton
dc.date.accessioned2023-06-18T05:38:56Z
dc.date.available2023-06-18T05:38:56Z
dc.date.issued2017
dc.description.abstractIn recent years fractionally differenced processes have received a great deal of attention due to their exibility in nancial applications with long memory. In this paper, we develop a new realized stochastic volatility (RSV) model with general Gegenbauer long memory (GGLM), which encompasses a new RSV model with seasonal long memory (SLM). The RSV model uses the information from returns and realized volatility measures simultaneously. The long memory structure of both models can describe unbounded peaks apart from the origin in the power spectrum. Forestimating the RSV-GGLM model, we suggest estimating the location parameters for the peaks of the power spectrum in the rst step, and the remaining parameters based on the Whittle likelihood in the second step. We conduct Monte Carlo experiments for investigating the nite sample properties of the estimators, with a quasi-likelihood ratio test of RSV-SLM model against theRSV-GGLM model. We apply the RSV-GGLM and RSV-SLM model to three stock market indices. The estimation and forecasting results indicate the adequacy of considering general long memory.
dc.description.facultyFac. de Ciencias Económicas y Empresariales
dc.description.facultyInstituto Complutense de Análisis Económico (ICAE)
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/45359
dc.identifier.issn2341-2356
dc.identifier.relatedurlhttps://www.ucm.es/icae
dc.identifier.urihttps://hdl.handle.net/20.500.14352/22934
dc.issue.number26
dc.language.isoeng
dc.page.total26
dc.publisherFacultad de Ciencias Económicas y Empresariales. Instituto Complutense de Análisis Económico (ICAE)
dc.relation.ispartofseriesDocumentos de Trabajo del Instituto Complutense de Análisis Económico (ICAE)
dc.rightsAtribución-NoComercial-CompartirIgual 3.0 España
dc.rights.accessRightsopen access
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/3.0/es/
dc.subject.jelC18
dc.subject.jelC21
dc.subject.jelC58
dc.subject.keywordStochastic Volatility
dc.subject.keywordRealized Volatility Measure
dc.subject.keywordLong Memory
dc.subject.keywordGegenbauer Polynomial
dc.subject.keywordSeasonality
dc.subject.keywordWhittle Likelihood.
dc.subject.ucmEconometría (Economía)
dc.subject.unesco5302 Econometría
dc.titleRealized Stochastic Volatility Models with Generalized Gegenbauer Long Memory
dc.typetechnical report
dc.volume.number2017
dcterms.referencesAbramovits, M. and N. Stegun (1970), Handbook of Mathematical Functions, Dover Publications, N.Y. Andersen, T.G., T. Bollerslev, F.X. Diebold, and P. Labys (2001), “The Distribution of Realized Exchange Rate Volatility”, Journal of the American Statistical Association, 96, 42–55. Andersen, T.G., T. Bollerslev, F.X. Diebold, and P. Labys (2003), “Modeling and Forecasting Realized Volatility”, Econometrica, 71, 529–626. Artiach, M. and J. Arteche (2012), “Doubly Fractional Models for Dynamic Heteroscedastic Cycle”, Computational Statistics & Data Analysis, 56, 2139–2158. Asai, M., C.-L. Chang, and M. McAleer (2017), “Realized stochastic volatility with general asymmetry and long memory”, Journal of Econometrics, 199, 202–212. Asai, M., M. McAleer, and M.C. Medeiros (2012), “Asymmetry and Long Memory in Volatility Modeling”, Journal of Financial Econometrics, 10, 495–512. Baillie R.T., T. Bollerslev, and H.O. Mikkelsen (1996). “Fractionally Integrated Generalized Autoregressive Conditional Heteroskedasticity”, Journal of Econometrics, 74, 3–30. Bollerslev, T. and H.O. Mikkelsen (1996), “Modeling and Pricing Long-Memory in Stock Market Volatility”, Journal of Econometrics, 73, 151–184. Bordignon, S., M. Caporin, and F. Lisi (2007), “Generalised Long-Memory GARCH Models for Intra-Daily Volatility”, Computational Statistics & Data Analysis, 51, 5900–5912. Bordignon, S., M. Caporin, and F. Lisi (2009), “Periodic Long-Memory GARCH Models”, Econometric Reviews, 28, 60–82. Breidt, F.J., N. Crato, and P. de Lima (1998), “The Detection and Estimation of Long Memory”, Journal of Econometrics, 83, 325–348. Chan, K.S. and H. Tsai (2012), “Inference of seasonal long-memory aggregate time series”, Bernoulli, 18, 1448–1464. Chung, C.F. (1996a), “Estimating A Generalized Long Memory Process”, Journal of Econometrics, 73, 237–259. Chung, C.F. (1996b), “A generalized fractionally integrated autoregressive moving-average process”, Journal of Time Series Analysis, 17, 111–140. Corsi, F. (2009), “A Simple Approximate Long-Memory Model of Realized Volatility”, Journal of Financial Econometrics, 7, 174–196. Diebold, F. and R. Mariano (1995), “Comparing Predictive Accuracy”, Journal of Business and Economic Statistics, 13, 253–263. Dunsmuir, W. and E.J. Hannan (1976), “Vector Linear Time Series Models”, Advances in Applied Probability, 8, 339–364. Gray, H.L., N. Zhang, and W.A. Woodward (1989), “On Generalized Fractional Processes”, Journal of Time Series Analysis, 10, 233–257. Geweke, J. and S. Porter-Hudak (1983), “The Estimation and Application of Long-Memory Time Series Models”, Journal of Time Series Analysis, 4, 87–104. Hansen, P.R. and Z. Huang (2016), “Exponential GARCH Modeling with Realized Measures of Volatility”, Journal of Business & Economic Statistics, 34, 269–287. Hansen, P.R., Z. Huang, and H.H. Shek (2012), “Realized GARCH: A Complete Model of Returns and Realized Measures of Volatility”, Journal of Applied Econometrics, 27, 877–906. Harvey, A. (1998), “Long Memory in Stochastic Volatility”, in: Knight, J. and S. Satchell (eds.), Forecasting Volatility in Financial Markets, Oxford: Butterworth-Haineman, 307–320. Harvey, A.C., E. Ruiz, and N. Shephard (1994), “Multivariate Stochastic Variance Models”, Review of Economic Studies, 61, 247–264. Hidalgo, J. and P. Soulier (2004), “Estimation of the location and exponent of the spectral singularity of a long memory process”, Journal of Time Series Analysis, 25, 55–81. Hosoya, Y. (1997), “A Limit Theory for Long-Range Dependence and Statistical Inference on Related Models”, Annals of Statistics, 25, 105–137. Koopman, S.J., B. Jungbacker, and E. Hol (2005), “Forecasting Daily Variablity of the S&P 100 Stock Index Using Historical Realized and Implied Volatility Measurements”, Journal of Empirical Finance, 12, 445–475. Koopman, S.J. and M. Scharth (2013), “The Analysis of Stochastic Volatility in the Presence of Daily Realized Measures”, Journal of Financial Econometrics, 11, 76–115. McElroy, T. S. and S. H. Holan (2012), “On the Computation of Autocovariances for Generalized Gegenbauer Processes”, Statistica Sinica, 22, 1661–1687. McElroy, T. S. and S. H. Holan (2016), “Computation of the Autocovariances for Time Series with Multiple Long-Range Persistencies”, Computational Statistics & Data Analysis, 101, 44–56. Peiris, S. and M. Asai (2016), “Generalized Fractional Processes with Long Memory and Time Dependent Volatility Revisited”, Econometrics, 4(3), 121. Pong S., M.B. Shackelton, S.J. Taylor, and X. Xu (2004), “Forecasting currency volatility: a comparison of implied volatilities and AR(FI)MA models”, Journal of Banking and Finance, 28, 2541–2563. Porter-Hudak, S. (1990), “An Application of the Seasonal Fractionally Differenced Model to the Monetary Aggregates”, Journal of the American Statistical Association, 85, 338–344. Shirota, S., T. Hizu, and Y. Omori (2014), “Realized Stochastic volatility with Leverage and Long Memory”, Computational Statistics & Data Analysis, 76, 618–641. Takahashi, M., Y. Omori, and T. Watanabe (2009), “Estimating Stochastic Volatility Models Using Daily Returns and Realized Volatility Simultaneously”, Computational Statistics & Data Analysis, 53, 2404–2426. Taniguchi, M. and Y. Kakizawa (2000), Asymptotic Theory of Statistical Inference for Time Series, New York: Springer-Verlag. Tsai, H., H. Rachinger, and E.M.H. Lin (2015), “Inference of Seasonal Long-Memory Time Series with Measurement Error”, Scandinavian Journal of Statistics, 42, 137–154. Whittle, P. (1952), “Some Results in Time Series Analysis”, Skandivanisk Aktuarietidskrift, 35, 48–60. Woodward, W.A., Q.C. Cheng, and H.L. Gray (1998), “A k-Factor GARMA Long Memory Model”, Journal of Time Series Analysis, 19, 485–504. Zaffaroni, P. (2009), “Whittle Estimation of EGARCH and Other Exponential Volatility Models”, Journal of Econometrics, 151, 190–200.
dspace.entity.typePublication

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1726.pdf
Size:
411.86 KB
Format:
Adobe Portable Document Format