Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Uniqueness of the boundary behavior for large solutions to a degenerate elliptic equation involving the ∞–Laplacian

dc.contributor.authorDíaz Díaz, Gregorio
dc.contributor.authorDíaz Díaz, Jesús Ildefonso
dc.date.accessioned2023-06-20T20:07:23Z
dc.date.available2023-06-20T20:07:23Z
dc.date.issued2003
dc.description.abstractIn this note we estimate the maximal growth rate at the boundary of viscosity solutions to −∆∞u + λ|u| m−1 u = f in Ω (λ > 0, m > 3).In fact, we prove that there is a unique explosive rate on the boundary for large solutions. A version of Liouville Theorem is also obtained when Ω = R N
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipDGES (Spain)
dc.description.sponsorshipEC
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/30952
dc.identifier.issn1578-7303
dc.identifier.officialurlhttp://www.rac.es/ficheros/doc/00141.pdf
dc.identifier.relatedurlhttp://www.springer.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/59609
dc.issue.number3
dc.journal.titleRevista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas
dc.language.isoeng
dc.page.final460
dc.page.initial455
dc.publisherSpringer
dc.relation.projectIDREN2003-0223
dc.relation.projectIDRTN HPRN-CT-2002-00274
dc.rights.accessRightsopen access
dc.subject.cdu517.9
dc.subject.keyword∞–Laplacian operator
dc.subject.keywordlarge solutions
dc.subject.keywordLiouville property
dc.subject.keywordviscosity solutions
dc.subject.ucmEcuaciones diferenciales
dc.subject.unesco1202.07 Ecuaciones en Diferencias
dc.titleUniqueness of the boundary behavior for large solutions to a degenerate elliptic equation involving the ∞–Laplacian
dc.typejournal article
dc.volume.number97
dcterms.referencesAronsson, G., Crandall, M. G. and Juutinena, P. A tour of the theory of absolutely minimizing functions, preprint. Bhattacharya, T.(2001). An elementary proof of the Harnack inequality for non-negative infinity-superharmonic functions, Electron. J. Differential Equations, 2001, No. 44, 1–8. Crandall, M. G., Ishii, H. and Lions, P.-L. (1992). User’s guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc. 27, 1–42. Crandall, M. C. and Zhang, J. (2003). Another way to say harmonic, Trans. Amer. Math. Soc., 355, 241–263. Díaz, G. A state constraints problem governed by the ∞–Laplacian, in ellaboration. Díaz, G. and Díaz, J. I. Large solutions to some degenerate elliptic equations involving the ∞–Laplacian case, to appear. Díaz, G. and Letelier, R. (1993). Explosive solutions of quasilinear elliptic equations: existence and uniqueness, Nonlinear Analysis. TMA., 20, No.2, 97–125. Gilbarg, D. and N. S. Trudinger, N. S. (1998). Elliptic Partial Differential Equation of Second Order, Springer Verlag, New York. Lindqvist, P. and Manfredi, J. J. (1995). The Harnack inequality for ∞-harmonic functions, Electron. J. Differential Equations, 1995, No. 4, 1–5.
dspace.entity.typePublication
relation.isAuthorOfPublication4ec05576-7c32-4862-aaea-26a72bafee94
relation.isAuthorOfPublication34ef57af-1f9d-4cf3-85a8-6a4171b23557
relation.isAuthorOfPublication.latestForDiscovery4ec05576-7c32-4862-aaea-26a72bafee94

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
185.pdf
Size:
77.92 KB
Format:
Adobe Portable Document Format

Collections