Convex-Hull Of Polynomials And Sums Of 2m-Th Powers
| dc.contributor.author | Bradley Delso, Margarita | |
| dc.date.accessioned | 2023-06-20T16:49:47Z | |
| dc.date.available | 2023-06-20T16:49:47Z | |
| dc.date.issued | 1989 | |
| dc.description.abstract | Using some elementary theory of convex sets we prove a necessary and a sufficient condition for f ε R[x„ . . ., x„](R being the real numbers) to be a finite sum of 2m-th powers of rational functions in x1, . . ., x n over R[i.e.f ε ∑ R(x)2 m] | |
| dc.description.department | Sección Deptal. de Sistemas Informáticos y Computación | |
| dc.description.faculty | Fac. de Ciencias Matemáticas | |
| dc.description.refereed | TRUE | |
| dc.description.status | pub | |
| dc.eprint.id | https://eprints.ucm.es/id/eprint/14814 | |
| dc.identifier.issn | 0764-4442 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.14352/57161 | |
| dc.issue.number | 12 | |
| dc.journal.title | Comptes Rendus de l'Académie des Sciences. Série I. Mathématique | |
| dc.language.iso | eng | |
| dc.page.final | 755 | |
| dc.page.initial | 751 | |
| dc.publisher | Elsevier | |
| dc.rights.accessRights | restricted access | |
| dc.subject.cdu | 512.623.5 | |
| dc.subject.cdu | 511.55 | |
| dc.subject.keyword | rench polynomial ring | |
| dc.subject.keyword | function field | |
| dc.subject.keyword | convex set | |
| dc.subject.keyword | positive semidefinite polynomial | |
| dc.subject.keyword | sum of 2m-th powers | |
| dc.subject.keyword | convex hull | |
| dc.subject.keyword | supporting hyperplane | |
| dc.subject.ucm | Teoría de números | |
| dc.subject.ucm | Álgebra | |
| dc.subject.unesco | 1205 Teoría de Números | |
| dc.subject.unesco | 1201 Álgebra | |
| dc.title | Convex-Hull Of Polynomials And Sums Of 2m-Th Powers | |
| dc.type | journal article | |
| dc.volume.number | 309 | |
| dspace.entity.type | Publication | |
| relation.isAuthorOfPublication | aab2395d-f8da-473c-8a69-a28614b98be3 | |
| relation.isAuthorOfPublication.latestForDiscovery | aab2395d-f8da-473c-8a69-a28614b98be3 |
Download
Original bundle
1 - 1 of 1

