Electrical properties of pinholes in GaN:Mn epitaxial films characterized by conductive AFM

Thumbnail Image
Full text at PDC
Publication Date
Herrera, M.
Stutzmann, M.
Piqueras de Noriega, Javier
Advisors (or tutors)
Journal Title
Journal ISSN
Volume Title
Academic Press Ltd- Elsevier Science Ltd
Google Scholar
Research Projects
Organizational Units
Journal Issue
Mn doped GaN films have been studied by conductive Atomic Force Microscopy (AFM), Cathodoluminescence (CL) and Electron Beam Induced Current (EBIC). AFM measurements revealed the presence of pinholes with diameters between 130 and 380 nm. The distribution, density and size of the pinholes depend on the Mn doping concentration. AFM Leakage Current images (LC) show a defined contrast at the pinhole planes {101 (1) over bar} in the sample with Mn concentration of 6.2 x 10(20) cm(-3). For the sample with an Mn concentration of 1.1 X 10(20) cm(-3), LC contrast appears around the pinholes, while no LC contrast was observed for sample with lower Mn concentration. CL measurements indicate that the samples exhibit strain related to Mn incorporation. In correlation with LC measurements, EBIC images show that pinholes are recombination sites. The combination of these techniques enabled us to analyze the Frenkel-Poole conduction in the samples and its relationship with the residual strain and the doping concentration in the films, which would exclude the mechanism of conduction through dislocations. (C) 2008 Elsevier Ltd. All rights reserved.
©2008 Elsevier Ltd. All rights reserved. This work was supported by MEC (Project MAT2006-01259).
Unesco subjects
H. Zhang, E.J. Miller, E.T. Yua, J. Appl. Phys. 99 (2006) 023703. H. Zhang, E.T. Yua, J. Appl. Phys. 99 (2006) 014501. E.J. Miller, D.M. Schaadt, E.T. Yua, P. Waltereit, C. Poblenz, J.S. Speck, Appl. Phys. Lett. 82 (2003) 1293. E.J. Miller, D.M. Schaadt, E.T. Yu, C. Poblenz, C. Elsass, J.S. Speck, J. Appl. Phys. 91 (2002) 9821. P. Kozodoy, J.P. Ibbetson, H. Marchand, P.T. Fini, S. Keller, J.S. Speck, S.P. DenBaars, U.K. Mishra, Appl. Phys. Lett. 73 (1998) 975. J.W.P. Hsu, M.J. Manfra, D.V. Lang, S. Richter, S.N.G. Chu, A.M. Sergent, R.N. Kleiman, L.N. Pfeiffer, R.J. Molnar, Appl. Phys. Lett. 78 (2001) 1685. K. Shiojima, T. Suemitsu, M. Ogura, Appl. Phys. Lett. 78 (2001) 3636. T. Graf, M. Gjukic, M. Hermann, M.S. Brandt, M. Stutzmann, L. Görgens, J.B. Philipp, O. Ambacher, J. Appl. Phys. 93 (2003) 9697. Z. Liliental-Weber, Y. Chen, S. Ruvimov, J. Washburn, Phys. Rev. Lett. 79 (1997) 2835. M. Herrera, A. Cremades, J. Piqueras, M. Stutzmann, O. Ambacher, J. Appl. Phys. 95 (2004) 5305. M. Albrecht, A. Cremades, J. Krinke, S. Christiansen, O. Ambacher, J. Piqueras, H.P. Strunk, M. Stutzmann, Phys. Status Solidi (B) 216 (1999) 409. J. Bai, T. Wang, P.J. Parbrook, I.M. Ross, J. Cullis, Cryst. Growth 289 (2006) 63. K.S. Son, D.G. Kim, H.K. Cho, K. Lee, S. Kim, K. Park, J. Cryst. Growth 261 (2004) 50. A. Cremades, M. Albrecht, J.M. Ulloa, J. Piqueras, H.P. Strunk, D. Hanser, R.F. Davis, Mat. Res. Soc. Proc. 588 (2000) 81 86. M. Shiojiri, C.C. Chuo, J.T. Hsu, J.R. Yang, H. Saijo, J. Appl. Phys. 99 (2006) 73505. S.D. Ganichev, E. Ziemann, W. Prettl, I.N. Yassievich, A.A. Istratov, E.R. Weber, Phys. Rev. B 61 (2000) 10361. J. Elsner, R. Jones, M.I. Heggie, P.K. Sitch, M. Haugk, Th. Frauenheim, S. Öberg, P.R. Briddon, Phys. Rev. B 58 (1998) 12571. D. Cherns, C.G. Jiao, Phys. Rev. Lett. 87 (2001) 205504. T. Graf, M. Gjukic, M. Hermann, M.S. Brandt, M. Stutzmann, O. Ambacher, Phys. Rev. B 67 (2003) 165215. I. Tanaka, I. Kamiya, H. Sakaki, N. Qureshi, S.J. Allen Jr., P.M. Petroff, Appl. Phys. Lett. 74 (1999) 844. O. Gelhausen, E. Malguth, M.R. Phillips, E.M. Goldys, M. Strassburg, A. Hoffmann, T. Graf, M. Gjukic, M. Stutzmann, Appl. Phys. Lett. 84 (2004) 31.