Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Operator-free sparse domination

Loading...
Thumbnail Image

Full text at PDC

Publication date

2022

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Cambridge University Press
Citations
Google Scholar

Citation

Lerner AK, Lorist E, Ombrosi S (2022) Operator-free sparse domination. Forum of Mathematics, Sigma 10:e15. https://doi.org/10.1017/fms.2022.8

Abstract

We obtain a sparse domination principle for an arbitrary family of functions 𝑓 (𝑥, 𝑄), where 𝑥 ∈ R𝑛 and Q is a cube in R𝑛. When applied to operators, this result recovers our recent works [37, 39]. On the other hand, our sparse domination principle can be also applied to non-operator objects. In particular, we show applications to generalised Poincaré–Sobolev inequalities, tent spaces and general dyadic sums. Moreover, the flexibility of our result allows us to treat operators that are not localisable in the sense of [39], as we will demonstrate in an application to vectorvalued square functions.

Research Projects

Organizational Units

Journal Issue

Description

UCM subjects

Unesco subjects

Keywords

Collections