Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Redes neuronales y aprendizaje por refuerzo en el control de turbinas eólicas

Loading...
Thumbnail Image

Full text at PDC

Publication date

2021

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

UPV
Citations
Google Scholar

Citation

Sierra-García, J. E., & Santos, M. (2021). Redes neuronales y aprendizaje por refuerzo en el control de turbinas eólicas. Revista Iberoamericana de Automática e Informática industrial, 18(4), 327-335.

Abstract

El control del ángulo de las palas de las turbinas eólicas es complejo debido al comportamiento no lineal de los aerogeneradores, y a las perturbaciones externas a las que están sometidas debido a las condiciones cambiantes del viento y otros fenómenos meteorológicos. Esta dificultad se agrava en el caso de las turbinas flotantes marinas, donde también les afectan las corrientes marinas y las olas. Las redes neuronales, y otras técnicas del control inteligente, han demostrado ser muy útiles para el modelado y control de estos sistemas. En este trabajo se presentan diferentes configuraciones de control inteligente, basadas principalmente en redes neuronales y aprendizaje por refuerzo, aplicadas al control de las turbinas eólicas. Se describe el control directo del ángulo de las palas del aerogenerador y algunas configuraciones híbridas de control. Se expone la utilidad de los neuro-estimadores para la mejora de los controladores. Finalmente, se muestra un ejemplo de aplicación de algunas de estas técnicas en un modelo de turbina terrestre.

Research Projects

Organizational Units

Journal Issue

Description

Keywords

Collections