Unrolling and rolling of curves in non-convex surfaces.

dc.contributor.authorMuñoz Masqué, Jaime
dc.contributor.authorPozo Coronado, Luis Miguel
dc.date.accessioned2023-06-20T17:06:06Z
dc.date.available2023-06-20T17:06:06Z
dc.date.issued1999
dc.description.abstractThe notion of unrolling of a spherical curve is proved to coincide with its development into the tangent plane. The development of a curve in an arbitrary surface in the Euclidean 3-space is then studied from the point of view of unrolling. The inverse operation, called the rolling of a curve onto a surface, is also analysed and the relationship of such notions with the functional defined by the square of curvature is stated. An application to the construction of nonlinear splines on Riemannian surfaces is suggested.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipCICYT
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/17493
dc.identifier.doi10.1088/0266-5611/15/4/303
dc.identifier.issn0266-5611
dc.identifier.officialurlhttp://iopscience.iop.org/0266-5611/15/4/303/pdf/0266-5611_15_4_303.pdf
dc.identifier.relatedurlhttp://iopscience.iop.org
dc.identifier.urihttps://hdl.handle.net/20.500.14352/57771
dc.issue.number4
dc.journal.titleInverse Problems
dc.language.isoeng
dc.page.final880
dc.page.initial869
dc.publisherIop science
dc.relation.projectIDPB95–0124.
dc.rights.accessRightsrestricted access
dc.subject.cdu514
dc.subject.keywordRolling
dc.subject.keywordunrolling
dc.subject.keywordLevi-Civita connection
dc.subject.keywordSpline interpolation
dc.subject.ucmGeometría
dc.subject.unesco1204 Geometría
dc.titleUnrolling and rolling of curves in non-convex surfaces.
dc.typejournal article
dc.volume.number15
dcterms.referencesBryant R and Griffiths P 1986 Reduction for constrained variational problems and the integral of the squared curvature Am. J. Math. 108 525–70 Courant R and Hilbert D 1970 Methods of Mathematical Physics vol I (New York: Interscience) Jupp P E and Kent J T 1987 Fitting smooth paths to spherical data Appl. Stat. 36 34–46 Kobayashi S and Nomizu K 1963 Foundations of Differential Geometry vol I (New York: Interscience) Langer J and Singer D A 1984 The total squared curvature of closed curves J. Diff. Geom. 20 1–22 Malcolm M A 1977 On the computation of nonlinear spline functions SIAM J. Num. Anal. 14 254–82 O’Neill B 1983 Semi-Riemannian geometry with applications to relativity (New York: Academic) Smale S 1958 Regular curves on Riemannian manifolds Trans. Am. Math. Soc. 87 492–512
dspace.entity.typePublication
relation.isAuthorOfPublication0124d449-632e-4dc8-9651-eb1975f330ab
relation.isAuthorOfPublication.latestForDiscovery0124d449-632e-4dc8-9651-eb1975f330ab

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Pozo06.pdf
Size:
188.25 KB
Format:
Adobe Portable Document Format

Collections