Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Future changes in the Brewer-Dobson circulation under different greenhouse gas concentrations in WACCM4

dc.contributor.authorPalmeiro Núñez, Froila María
dc.contributor.authorCalvo Fernández, Natalia
dc.date.accessioned2023-06-19T13:31:22Z
dc.date.available2023-06-19T13:31:22Z
dc.date.issued2014-08
dc.description© 2014 American Meteorological Society. The authors are grateful to Jadwiga H. Richter for the helpful discussion and comments on gravity waves. F. M. Palmeiro and N. Calvo were supported by the Spanish Ministry of Economy and Competitiveness trough project CGL12012-34221, ‘‘Mechanisms and Variability of the Troposphere-Stratosphere Coupling.’’ This work was also partially supported by the European Project 603557 STRATOCLIM under program FP7-ENV-2013-two-stage. The Community Earth System Model (CESM) is supported by NSF and the Office of Science of the U.S. Department of Energy. Computing resources were provided by NCAR’s Climate Simulation Laboratory, sponsored by NSF and other agencies. This research was enabled by the computational and storage resources of NCAR’s Computational and Information Systems Laboratory (CISL).
dc.description.abstractThe climatology and future changes of the Brewer–Dobson circulation (BDC) in three climate change scenarios are studied using the latest version of the Whole Atmosphere Community Climate Model (WACCM4), which is fully coupled to an ocean model. The results show an acceleration in both the shallow and deep branches of circulation in response to increasing greenhouse gases (GHGs) together with an upward displacement of the tropical upwelling in the deep branch near the stratopause. The downward control principle reveals that different waves are involved in forcing the acceleration of the upper and lower branches. Climatological-mean tropical upwelling in both the lower and upper stratosphere is dominated by explicitly resolved, planetary-scale waves. Trends in the tropical upwelling in the lower stratosphere are mainly attributed to explicitly resolved, planetary-scale waves. However, in the upper stratosphere, despite the fact that resolved waves control the forcing of the climatological upwelling, their contribution to the long-term trend diminishes with increasing GHGs, while the role of gravity waves associated with fronts increases and becomes dominant in the model scenario with the largest GHG increases. The intensification and upward displacement of the subtropical tropospheric jets due to climate change leads to filtering of the westerly part of the frontal gravity wave spectrum, leaving the easterly components to reach the upper stratosphere and force the changes in the circulation there.
dc.description.departmentDepto. de Física de la Tierra y Astrofísica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipUnión Europea. FP7
dc.description.sponsorshipSpanish Ministry of Economy and Competitiveness
dc.description.sponsorshipNSF
dc.description.sponsorshipOffice of Science of the U.S. Department of Energy
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/29291
dc.identifier.doi10.1175/JAS-D-13-0289.1
dc.identifier.issn0022-4928
dc.identifier.officialurlhttp://dx.doi.org/ 10.1175/JAS-D-13-0289.1
dc.identifier.relatedurlhttp://journals.ametsoc.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/33930
dc.issue.number8
dc.journal.titleJournal of the atmospheric sciences
dc.language.isospa
dc.page.final2975
dc.page.initial2962
dc.publisherAmerican Meteorological Society
dc.relation.projectIDFP7-ENV-2013 STRATOCLIM (603557)
dc.relation.projectIDCGL12012-34221
dc.rights.accessRightsopen access
dc.subject.cdu52
dc.subject.ucmAstrofísica
dc.subject.ucmAstronomía (Física)
dc.titleFuture changes in the Brewer-Dobson circulation under different greenhouse gas concentrations in WACCM4
dc.typejournal article
dc.volume.number71
dcterms.referencesAndrews, D. G., J. R. Holton, and C. B. Leovy, 1987: Middle Atmosphere Dynamics. International Geophysics Series, Vol. 40, Academic Press, 489 pp. Birner, T., and H. Bönisch, 2011: Residual circulation trajectories and transit times into the extratropical lowermost stratosphere. Atmos. Chem. Phys., 11, 817–827, doi:10.5194/acp-11-817-2011. Braesicke, P., and J. A. Pyle, 2004: Sensitivity of dynamics and ozone to different representations of SSTs in the Unified Model. Quart. J. Roy. Meteor. Soc., 130, 2033–2045, doi:10.1256/ qj.03.183. Butchart, N., and Coauthors, 2006: Simulations of anthropogenic change in the strength of the Brewer–Dobson circulation. Climate Dyn., 27, 727–741, doi:10.1007/s00382-006-0162-4. ——, and Coauthors, 2010: Chemistry–climate model simulations of twenty-first century stratospheric climate and circulation changes. J. Climate, 23, 5349–5374, doi:10.1175/2010JCLI3404.1. ——, and Coauthors, 2011: Multimodel climate and variability of the stratosphere. J. Geophys. Res., 116, D05102, doi:10.1029/ 2010JD014995. Calvo, N., and R. R. Garcia, 2009: Wave forcing of the tropical upwelling in the lower stratosphere under increasing concentrations of greenhouse gases. J. Atmos. Sci., 66, 3184– 3196, doi:10.1175/2009JAS3085.1. Danabasoglu, G., S. C. Bates, B. P. Briegleb, S. R. Jayne, M. Jochum, W. G. Large, S. Peacock, and S. G. Yeager, 2012: The CCSM4 ocean component. J. Climate, 25, 1361–1389, doi:10.1175/ JCLI-D-11-00091.1. Deckert, R., and M. Dameris, 2008: Higher tropical SSTs strengthen the tropical upwelling via deep convection. Geophys. Res. Lett., 35, L10813, doi:10.1029/2008GL033719. Eyring, V., T. G. Shepherd, and D. W. Waugh, Eds., 2010: SPARC report on the evaluation of chemistry climate models. SPARC Rep. 5, WCRP-132, WMO/TD-1526, 305 pp. [Available online at http://www.sparc-climate.org/publications/sparc-reports/ sparc-report-no5/.] Garcia, R. R., and W. J. Randel, 2008: Acceleration of the Brewer– Dobson circulation due to increases in greenhouse gases. J. Atmos. Sci., 65, 2731–2739, doi:10.1175/2008JAS2712.1. Garny, H., M. Dameris, W. Randel, G. E. Bodeker, and R. Deckert, 2011: Dynamically forced increase of tropical upwelling in the lower stratosphere. J. Atmos. Sci., 68, 1214– 1233, doi:10.1175/2011JAS3701.1. Hardiman, S., N. Butchart, and N. Calvo, 2014: The morphology of the Brewer–Dobson circulation and its response to climate change in CMIP5 simulations. Quart. J. Roy. Meteor. Soc., doi:10.1002/qj.2258, in press. Haynes, P. H., C. J. Marks, M. E. McIntyre, T. G. Shepherd, and K. P. Shine, 1991: On the ‘‘downward control’’ of extratropical diabatic circulations by eddy-induced mean zonal forces. J. Atmos. Sci., 48, 651–680, doi:10.1175/1520-0469(1991)048,0651: OTCOED.2.0.CO;2. Holland, M. M., D. A. Bailey, B. P. Briegleb, B. Light, and E. Hunke, 2012: Improved sea ice shortwave radiation physics in CCSM4: The impact of melt ponds and aerosols on Arctic sea ice. J. Climate, 25, 1413–1430, doi:10.1175/ JCLI-D-11-00078.1. Holton, J. R., 1990: On the global exchange of mass between the stratosphere and troposphere. J. Atmos. Sci., 47, 392–395, doi:10.1175/1520- 0469(1990)047,0392:OTGEOM.2.0.CO;2. ——, P. H. Haynes, M. E. McIntyre, A. R. Douglass, R. B. Rood, and L. Pfister, 1995: Stratosphere–troposphere exchange. Rev. Geophys., 33, 403–439, doi:10.1029/95RG02097. Kosaka, Y., and S.-P. Xie, 2013: Recent global-warming hiatus tied to equatorial Pacific surface cooling. Nature, 501, 403–407, doi:10.1038/nature12534. Lean, J., G. Rottman, J. Harder, and G. Kopp, 2005: SORCE contributions to new understanding of global change and solar variability. Sol. Phys., 230, 27–53, doi:10.1007/ s11207-005-1527-2. Li, F., J. Austin, and J. Wilson, 2008: The strength of the Brewer– Dobson circulation in a changing climate: Coupled chemistry– climate model simulations. J. Climate, 21, 40–57 doi:10.1175/ 2007JCLI1663.1. Lin, P., and Q. Fu, 2013: Changes in various branches of the Brewer–Dobson circulation from an ensemble of chemistry climate models. J. Geophys. Res. Atmos., 118, 73–84, doi:10.1029/ 2012JD018813. Marsh, D., M. J. Mills, D. E. Kinnison, J.-F. Lamarque, N. Calvo, and L. M. Polvani, 2013: Climate change from 1850 to 2005 simulated in CESM1(WACCM). J. Climate, 26, 7372–7391, doi:10.1175/JCLI-D-12-00558.1. Matthes, K., D. R. Marsh, R. R. Garcia, D. E. Kinnison, F. Sassi, and S. Walters, 2010: Role of the QBO in modulating the in- fluence of the 11 year solar cycle on the atmosphere using constant forcings. J. Geophys. Res., 115, D18110, doi:10.1029/ 2009JD013020. McLandress, C., and T. G. Shepherd, 2009: Simulated anthropogenic changes in the Brewer– Dobson circulation, including its extension to high latitudes. J. Climate, 22, 1516–1540, doi:10.1175/2008JCLI2679.1. Olsen, M. A., M. R. Schoeberl, and J. E. Nielsen, 2007: Response of stratospheric circulation and stratosphere–troposphere exchange to changing sea surface temperatures. J. Geophys. Res., 112, D16104, doi:10.1029/2006JD008012. Richter, J. H., F. Sassi, and R. R. Garcia, 2010: Toward a physically based gravity wave source parameterization in a general circulation model. J. Atmos. Sci., 67, 136–156, doi:10.1175/2009JAS3112.1. Rosenlof, K. H., 1995: Seasonal cycle of the residual mean meridional circulation in the stratosphere. J. Geophys. Res., 100, 5173–5191, doi:10.1029/94JD03122. Seviour, W. J. M., N. Butchart, and S. C. Hardiman, 2012: The Brewer–Dobson circulation inferred from ERA-Interim. Quart. J. Roy. Meteor. Soc., 138, 878–888, doi:10.1002/qj.966. Shepherd, T. G., and C. McLandress, 2011: A robust mechanism for strengthening of the Brewer–Dobson circulation in response to climate change: Critical-layer control of subtropical wave breaking. J. Atmos. Sci., 68, 784–797, doi:10.1175/ 2010JAS3608.1. Tilmes, S., R. R. Garcia, D. E. Kinnison, A. Gettelman, and P. J. Rasch, 2009: Impact of geoengineered aerosols on the troposphere and stratosphere. J. Geophys. Res., 114, D12305, doi:10.1029/2008JD011420.
dspace.entity.typePublication
relation.isAuthorOfPublication79629e81-2e7b-476b-be93-3773246986a3
relation.isAuthorOfPublication3cfa985b-0ebd-44fb-b791-312638313455
relation.isAuthorOfPublication.latestForDiscovery3cfa985b-0ebd-44fb-b791-312638313455

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
180.pdf
Size:
2.45 MB
Format:
Adobe Portable Document Format

Collections