Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Weighted nonparametric regression

dc.contributor.authorRío Bueno , Manuel del
dc.contributor.authorDelicado, Pedro
dc.date.accessioned2023-06-20T17:06:53Z
dc.date.available2023-06-20T17:06:53Z
dc.date.issued1997
dc.description.abstractIn the fixed design regression model, additional weights are considered for the Nadaraya-Watson and Gasser-Muller kernel estimators. We study their asymptotic behavior and the relationships between new and classical estimators. For a simple family of weights, and considering the AIMSE as global loss criterion, we show some possible theoretical advantages. An empirical study illustrates the performance of the weighted kernel estimators in theoretical ideal situations and in simulated data sets. Also some results concerning the use of weights for local polynomial estimators are given.
dc.description.departmentDepto. de Estadística e Investigación Operativa
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/17622
dc.identifier.doi10.1080/03610929708832089
dc.identifier.issn0361-0926
dc.identifier.urihttps://hdl.handle.net/20.500.14352/57793
dc.issue.number12
dc.journal.titleCommunications in statistics.Theory and methods
dc.page.final2998
dc.page.initial2983
dc.publisherTaylor & Francis
dc.rights.accessRightsmetadata only access
dc.subject.cdu519.8
dc.subject.keywordAsymptotic behavior
dc.subject.keywordFixed design
dc.subject.keywordKernel regression
dc.subject.keywordLocal polynomial estimators
dc.subject.keywordSmoothing
dc.subject.keywordEstimators
dc.subject.ucmInvestigación operativa (Matemáticas)
dc.subject.unesco1207 Investigación Operativa
dc.titleWeighted nonparametric regression
dc.typejournal article
dc.volume.number26
dspace.entity.typePublication

Download

Collections