Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Analytic completion of an open set

dc.book.titleContribuciones matemáticas en honor a Juan Tarrés
dc.contributor.authorMartínez Ansemil, José María
dc.contributor.authorLópez-Salazar Codes, Jerónimo
dc.contributor.authorPonte Miramontes, María Del Socorro
dc.date.accessioned2023-06-15T07:50:34Z
dc.date.available2023-06-15T07:50:34Z
dc.date.issued2012
dc.description.abstractLet f be a holomorphic function on a complex normed space E. The possibility of extending f to the completion of E has been studied by Hirschowitz, Noverraz, Dineen, and Dineen-Noverraz. Here, following the ideas in [4, section 6.1], we study the extension problem for functions defined on open subsets of E. Moreover, through a complexification process, we use these results to obtain the analogous ones for analytic functions on real normed spaces. We note that in the real case we do not have, among other things, Cauchy inequalities and they are essential in the complex case.en
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/24094
dc.identifier.isbn978-84-695-4421-1
dc.identifier.urihttps://hdl.handle.net/20.500.14352/173.1
dc.language.isoeng
dc.page.final38
dc.page.initial27
dc.publication.placeMadrid
dc.publisherUCM
dc.relation.projectIDBE45/08
dc.rights.accessRightsopen access
dc.subject.cdu517
dc.subject.keywordNormed space
dc.subject.keywordHolomorphic function
dc.subject.keywordBounding set
dc.subject.ucmAnálisis matemático
dc.subject.unesco1202 Análisis y Análisis Funcional
dc.titleAnalytic completion of an open seten
dc.typebook part
dspace.entity.typePublication
relation.isAuthorOfPublicatione94d6c20-a1ea-4d41-aa71-df8bbd1ad67d
relation.isAuthorOfPublication67a29a58-69bf-4013-9eef-059313b4a915
relation.isAuthorOfPublication.latestForDiscovery67a29a58-69bf-4013-9eef-059313b4a915

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Ansemil29.pdf
Size:
214.44 KB
Format:
Adobe Portable Document Format

Version History

Now showing 1 - 2 of 2
VersionDateSummary
2*
2023-06-15 09:50:34
Version created in EPrints
2023-06-15 09:50:34
Version created in EPrints
* Selected version