Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

The Hanna Neumann conjecture for surface groups

dc.contributor.authorAntolín Pichel, Yago
dc.contributor.authorJaikin-Zapirain, Andrei
dc.date.accessioned2023-06-22T10:47:17Z
dc.date.available2023-06-22T10:47:17Z
dc.date.issued2022-10-12
dc.description.abstractThe Hanna Neumann conjecture is a statement about the rank of the intersection of two finitely generated subgroups of a free group. The conjecture was posed by Hanna Neumann in 1957. In 2011, a strengthened version of the conjecture was proved independently by Joel Friedman and by Igor Mineyev. In this paper we show that the strengthened Hanna Neumann conjecture holds not only in free groups but also in non-solvable surface groups. In addition, we show that a retract in a free group and in a surface group is inert. This implies the Dicks–Ventura inertia conjecture for free and surface groups.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyInstituto de Ciencias Matemáticas (ICMAT)
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Economía, Industria y Competitividad (MINECO)
dc.description.sponsorshipCentro de Excelencia Severo Ochoa
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/72957
dc.identifier.doi10.1112/S0010437X22007709
dc.identifier.issn0010-437X
dc.identifier.officialurlhttps://doi.org/10.1112/S0010437X22007709
dc.identifier.urihttps://hdl.handle.net/20.500.14352/71666
dc.issue.number9
dc.journal.titleCompositio Mathematica
dc.language.isoeng
dc.page.final1877
dc.page.initial1850
dc.publisherCambridge University Press
dc.relation.projectIDMTM2017-82690-P; PID2020-114032GB-I00
dc.relation.projectIDSEV-2015-0554; CEX2019-000904-S4
dc.rightsAtribución 3.0 España
dc.rights.accessRightsopen access
dc.rights.urihttps://creativecommons.org/licenses/by/3.0/es/
dc.subject.cdu512.54
dc.subject.keywordSurface groups
dc.subject.keywordLimit groups
dc.subject.keywordL2-Betti numbers
dc.subject.keywordThe Hanna Neumann conjecture
dc.subject.keywordLück's approximation
dc.subject.ucmGrupos (Matemáticas)
dc.titleThe Hanna Neumann conjecture for surface groups
dc.typejournal article
dc.volume.number158
dcterms.referencesABCF+90 J. M. Alonso, T. Brady, D. Cooper, V. Ferlini, M. Lustig, M. Mihalik, M. Shapiro and H. Short, Notes on word hyperbolic groups, in Group theory from a geometrical viewpoint (Trieste, 1990), ed. H. Short (World Scientific Publishing, River Edge, NJ, 1991), 3–63. AMST19 Y. Antolín, M. Mj, A. Sisto and S. J. Taylor, Intersection properties of stable subgroups and bounded cohomology, Indiana Univ. Math. J. 68 (2019), 179–199. Ber82 S. K. Berberian, The maximal ring of quotients of a finite von Neumann algebra, Rocky Mountain J. Math. 12 (1982), 149–164. BH92 M. Bestvina and M. Handel, Train tracks and automorphisms of free groups, Ann. of Math. (2) 135 (1992), 1–51. BK17 M. Bridson and D. Kochloukova, Volume gradients and homology in towers of residually-free groups, Math. Ann. 367 (2017), 1007–1045. Bro82 K. S. Brown, Cohomology of groups. Graduate Texts in Mathematics, vol. 87 (Springer, New York–Berlin, 1982). Dah03 F. Dahmani, Combination of convergence groups, Geom. Topol. 7 (2003), 933–963. DV96 W. Dicks and E. Ventura, The group fixed by a family of injective endomorphisms of a free group, Contemporary Mathematics, vol. 195 (American Mathematical Society, Providence, RI, 1996). Dic11 W. Dicks, Simplified Mineyev, Preprint (2011), http://mat.uab.es/∼dicks. DLMS+03 J. Dodziuk, P. Linnell, V. Mathai, T. Schick and S. Yates, Approximating L2-invariants and the Atiyah conjecture, Comm. Pure Appl. Math. 56 (2003), 839–873. ES05 G. Elek and E. Szab´o, Hyperlinearity, essentially free actions and L2-invariants. The sofic property, Math. Ann. 332 (2005), 421–441. Fri14 J. Friedman, Sheaves on graphs, their homological invariants, and a proof of the Hanna Neumann conjecture: with an appendix by Warren Dicks, Mem. Amer. Math. Soc. 233 (2014). Git96 R. Gitik, On the combination theorem for negatively curved groups, Internat. J. Algebra Comput. 6 (1996), 751–760. GJPZ14 F. Grunewald, A. Jaikin-Zapirain, A. Pinto and P. Zalesskii, Normal subgroups of profinite groups of non-negative deficiency, J. Pure Appl. Algebra 218 (2014), 804–828. Hag08 F. Haglund, Finite index subgroups of graph products, Geom. Dedicata 135 (2008), 167–209. HW08 F. Haglund and D. Wise, Special cube complexes, Geom. Funct. Anal. 17 (2008), 1551–1620. Hal49 M. Hall, Coset representations in free groups, Trans. Amer. Math. Soc, 67 (1949), 421–432. How54 A. G. Howson, On the intersection of finitely generated free groups, J. Lond. Math. Soc. (2) 29 (1954), 428–434. HW09 C. G. Hruska and D. T. Wise, Packing subgroups in relatively hyperbolic groups, Geom. Topol. 13 (2009), 1945–1988. HW15 T. Hsu and D. Wise, Cubulating malnormal amalgams, Invent. Math. 199 (2015), 293–331. IT89 W. Imrich and E. C. Turner, Endomorphisms of free groups and their fixed points, Math. Proc. Cambridge Philos. Soc. 105 (1989), 421–422. Jai17 A. Jaikin-Zapirain, Approximation by subgroups of finite index and the Hanna Neumann conjecture, Duke Math. J. 166 (2017), 1955–1987. Jai19a A. Jaikin-Zapirain, The base change in the Atiyah and Lück approximation conjectures, Geom. Funct. Anal. 29 (2019), 464–538. Jai19b A. Jaikin-Zapirain, L2-Betti numbers and their analogues in positive characteristic, in Groups St Andrews 2017 in Birmingham, London Mathematical Society Lecture Note Series, vol. 455 (Cambridge University Press, Cambridge, 2019), 346–406. JS19 A. Jaikin-Zapirain and M. Shusterman, The Hanna Neumann conjecture for Demushkin groups, Adv. Math. 349 (2019), 1–28. Jai20 A. Jaikin-Zapirain, Free Q-groups are residually torsion-free nilpotent, Preprint (2020), http:// matematicas.uam.es/∼andrei.jaikin/preprints/baumslag.pdf. KLM88 P. Kropholler, P. Linnell and J. Moody, Applications of a new K-theoretic theorem to soluble group rings, Proc. Amer. Math. Soc. 104 (1988), 675–684. Lüc94 W. Lück, Approximating L2-invariants by their finite-dimensional analogues, Geom. Funct. Anal. 4 (1994), 455–481. Lüc98a W. Lúck, Dimension theory of arbitrary modules over finite von Neumann algebras and L2-Betti numbers. I. Foundations, J. Reine Angew. Math. 495 (1998), 135–162. Lüc98b W. Lück, Dimension theory of arbitrary modules over finite von Neumann algebras and L2-Betti numbers. II. Applications to Grothendieck groups, L2-Euler characteristics and Burnside groups, J. Reine Angew. Math. 496 (1998), 213–236. Lüc02 W. Lück, L2-invariants: theory and applications to geometry and K-theory, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, vol. 44 (Springer, Berlin, 2002). Lin93 P. Linnell, Division rings and group von Neumann algebras, Forum Math. 5 (1993), 561–576. Lin98 P. Linnell, Analytic versions of the zero divisor conjecture, in Geometry and cohomology in group theory (Durham, 1994), London Mathematical Society Lecture Note Series, vol. 252 (Cambridge University Press, Cambridge, 1998), 209–248. Lin06 P. A. Linnell, Noncommutative localization in group rings, in Non-commutative localization in algebra and topology, London Mathematical Society Lecture Note Series, vol. 330 (Cambridge University Press, Cambridge, 2006), 40–59. LS12 P. Linnell and T. Schick, The Atiyah conjecture and Artinian rings, Pure Appl. Math. Q. 8 (2012), 313–327. LN91 D. Long and G. Niblo, Subgroup separability and 3-manifold groups, Math. Z. 207 (1991), 209–215. Mina06 A. Minasyan, Separable subsets of GFERF negatively curved groups, J. Algebra 304 (2006), 1090–1100. Mina22 A. Minasyan, On double coset separability and the Wilson-Zalesskii property, Preprint (2022), arXiv:2208.04058. Mine12 I. Mineyev, Submultiplicativity and the Hanna Neumann conjecture, Ann. of Math. (2) 175 (2012), 393–414. Moo89 J. Moody, Brauer induction for G0 of certain infinite groups, J. Algebra 122 (1989), 1–14. Neu56 H. Neumann, On the intersection of finitely generated free groups, Publ. Math. Debrecen 4 (1956), 186–189; Addendum. Publ. Math. Debrecen 5 (1957) 128. RZ96 L. Ribes and P. Zalesskii, Conjugacy separability of amalgamated free products of groups, J. Algebra 179 (1996), 751–774. Sch14 K. Schreve, The strong Atiyah conjecture for virtually cocompact special groups, Math. Ann. 359 (2014), 629–636. Sco78 P. Scott, Subgroups of surface groups are almost geometric, J. Lond. Math. Soc. (2) 17 (1978), 555–565. Sho91 H. Short, Quasiconvexity and a theorem of Howson’s, Group Theory from a Geometrical Viewpoint (Trieste, 1990) (World Scientific Publishing, River Edge, NJ, 1991), 168–176. Som90 T. Soma, Intersection of finitely generated surface groups, J. Pure Appl. Algebra 66 (1990), 81–95. Som91 T. Soma, Intersection of finitely generated surface groups. II, Bull. Kyushu Inst. Technol. Pure. Appl. Math. 38 (1991), 13–22. Tur96 E. C. Turner, Test words for automorphisms of free groups, Bull. Lond. Math. Soc. 28 (1996), 255–263. Ven02 E. Ventura, Fixed subgroups in free groups: a survey, in Combinatorial and geometric group theory (New York, 2000/Hoboken, NJ, 2001), Contemporary Mathematics, vol. 296 (American Mathematical Society, Providence, RI, 2002), 231–255. WZ98 J. Wilson and P. Zalesskii, Conjugacy separability of certain Bianchi groups and HNN extensions, Math. Proc. Cambridge Philos. Soc. 123 (1998), 227–242. Wil08 H. Wilton, Hall’s theorem for limit groups, Geom. Funct. Anal. 18 (2008), 271–303. Wil09 H. Wilton, Solutions to Bestvina & Feighn’s exercises on limit groups, in Geometric and cohomological methods in group theory, London Mathematical Society Lecture Note Series, vol. 358 (Cambridge University Press, Cambridge, 2009), 30–62. Wis12 D. Wise, From riches to raags: 3-manifolds, right-angled Artin groups, and cubical geometry, CBMS Regional Conference Series in Mathematics, vol. 117 (American Mathematical Society, Providence, RI, 2012), Published for the Conference Board of the Mathematical Sciences, Washington, DC. WZ14 J. Wu and Q. Zhang, The group fixed by a family of endomorphisms of a surface group, J. Algebra 417 (2014), 412–432.
dspace.entity.typePublication
relation.isAuthorOfPublicationbd3bab81-47d2-4551-811a-af8ac40597c5
relation.isAuthorOfPublication.latestForDiscoverybd3bab81-47d2-4551-811a-af8ac40597c5

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
the-hanna-neumann-conjecture-for-surface-groups.pdf
Size:
602.75 KB
Format:
Adobe Portable Document Format

Collections