Local Sampling of the Wigner Function at Telecom Wavelength with Loss-Tolerant Detection of Photon Statistics

dc.contributor.authorHarder, G.
dc.contributor.authorSilberhorn, Ch.
dc.contributor.authorRehacek, J.
dc.contributor.authorHradil, Z.
dc.contributor.authorMotka, L.
dc.contributor.authorStoklasa, B.
dc.contributor.authorSánchez Soto, Luis Lorenzo
dc.description©2016 American Physical Society. G. H. and Ch. S. acknowledge the support from the EU Horizon 2020 research and innovation program (Qcumber, Grant No. 665148). J. R., Z. H., L. M., and B. S. are thankful for the financial assistance of the Grant Agency of the Czech Republic (Grant No. 15-03194S), the IGA Project of the Palacký University (Grant No. PRF 2016-005), and the Technology Agency of the Czech Republic (Grant No. TE01020229).
dc.description.abstractWe report the experimental point-by-point sampling of the Wigner function for nonclassical states created in an ultrafast pulsed type-II parametric down-conversion source. We use a loss-tolerant time-multiplexed detector based on a fiber-optical setup and a pair of photon-number-resolving avalanche photodiodes. By capitalizing on an expedient data-pattern tomography, we assess the properties of the light states with outstanding accuracy. The method allows us to reliably infer the squeezing of genuine two-mode states without any phase reference.
dc.description.departmentDepto. de Óptica
dc.description.facultyFac. de Ciencias Físicas
dc.description.sponsorshipUnión Europea. H2020
dc.description.sponsorshipGrant Agency of the Czech Republic
dc.description.sponsorshipIGA Project (Palacký University)
dc.description.sponsorshipPalacký University
dc.description.sponsorshipTechnology Agency of the Czech Republic
dc.identifier.citation1. Quantum State Estimation, edited by M. G. A. Paris and J. Řeháček, Lecture Notes in Physics Vol. 649 (Springer, Berlin, 2004). 2. A. I. Lvovsky and M. G. Raymer, Continuous-variable optical quantum-state tomography, Rev. Mod. Phys. 81, 299 (2009). 3. A. Royer, Measurement of the Wigner Function, Phys. Rev. Lett. 55, 2745 (1985). 4. D. Leibfried, D. M. Meekhof, B. E. King, C. Monroe, W. M. Itano, and D. J. Wineland, Experimental Determination of the Motional Quantum State of a Trapped Atom, Phys. Rev. Lett. 77, 4281 (1996). 5. P. Bertet, A. Auffeves, P. Maioli, S. Osnaghi, T. Meunier, M. Brune, J. M. Raimond, and S. Haroche, Direct Measurement of the Wigner Function of a One-Photon Fock State in a Cavity, Phys. Rev. Lett. 89, 200402 (2002). 6. A. Kuzmich, I. A. Walmsley, and L. Mandel, Violation of Bell’s Inequality by a Generalized Einstein-Podolsky-Rosen State Using Homodyne Detection, Phys. Rev. Lett. 85, 1349 (2000). 7. G. Donati, T. J. Bartley, X.-M. Jin, M.-D. Vidrighin, A. Datta, M. Barbieri, and I. A. Walmsley, Observing optical coherence across Fock layers with weak-field homodyne detectors, Nat. Commun. 5, 5584 (2014). 8. S. Wallentowitz and W. Vogel, Unbalanced homodyning for quantum state measurements, Phys. Rev. A 53, 4528 (1996). 9. K. Banaszek and K. Wódkiewicz, Direct Probing of Quantum Phase Space by Photon Counting, Phys. Rev. Lett. 76, 4344 (1996). 10. R. H. Hadfield, Single-photon detectors for optical quantum information applications, Nat. Photonics 3, 696 (2009). 11. J. L. O’Brien, A. Furusawa, and J. Vuckovic, Photonic quantum technologies, Nat. Photonics 3, 687 (2009). 12. G. S. Buller and R. J. Collins, Single-photon generation and detection, Meas. Sci. Technol. 21, 012002 (2010). 13. C. M. Natarajan, M. G. Tanner, and R. H. Hadfield, Superconducting nanowire single-photon detectors: Physics and applications, Supercond. Sci. Technol. 25, 063001 (2012). 14. B. Calkins, P. L. Mennea, A. E. Lita, B. J. Metcalf, W. S. Kolthammer, A. Lamas-Linares, J. B. Spring, P. C. Humphreys, R. P. Mirin, J. C. Gates, P. G. R. Smith, I. A. Walmsley, T. Gerrits, and S. W. Nam, High quantum-efficiency photon-number-resolving detector for photonic on-chip information processing, Opt. Express 21, 22657 (2013). 15. J. Wenger, J. Fiurášek, R. Tualle-Brouri, N. J. Cerf, and P. Grangier, Pulsed squeezed vacuum measurements without homodyning, Phys. Rev. A 70, 053812 (2004). 16. D. Achilles, Ch. Silberhorn, C. Śliwa, K. Banaszek, and I. A. Walmsley, Fiber-assisted detection with photon number resolution, Opt. Lett. 28, 2387 (2003). 17. J. Řeháček, Z. Hradil, O. Haderka, J. Peřina, and M. Hamar, Multiple-photon resolving fiber-loop detector, Phys. Rev. A 67, 061801 (2003). 18. M. J. Fitch, B. C. Jacobs, T. B. Pittman, and J. D. Franson, Photon-number resolution using time-multiplexed single-photon detectors, Phys. Rev. A 68, 043814 (2003). 19. D. Achilles, Ch. Silberhorn, and I. A. Walmsley, Direct, Loss-Tolerant Characterization of Nonclassical Photon Statistics, Phys. Rev. Lett. 97, 043602 (2006). 20. K. Laiho, K. N. Cassemiro, D. Gross, and Ch. Silberhorn, Probing the Negative Wigner Function of a Pulsed Single Photon Point by Point, Phys. Rev. Lett. 105, 253603 (2010). 21. A. Luis and L. L. Sánchez-Soto, Complete Characterization of Arbitrary Quantum Measurement Processes, Phys. Rev. Lett. 83, 3573 (1999). 22. J. Fiurášek, Maximum-likelihood estimation of quantum measurement, Phys. Rev. A 64, 024102 (2001). 23. G. M. D’Ariano, L. Maccone, and P. Lo Presti, Quantum Calibration of Measurement Instrumentation, Phys. Rev. Lett. 93, 250407 (2004). 24. J. S. Lundeen, A. Feito, H. Coldenstrodt-Ronge, K. L. Pregnell, Ch. Silberhorn, T. C. Ralph, J. Eisert, M. B. Plenio, and I. A. Walmsley, Tomography of quantum detectors, Nat. Phys. 5, 27 (2009). 25. T. Amri, J. Laurat, and C. Fabre, Characterizing Quantum Properties of a Measurement Apparatus: Insights from the Retrodictive Approach, Phys. Rev. Lett. 106, 020502 (2011). 26. L. Zhang, A. Datta, H. B. Coldenstrodt-Ronge, X.-M. Jin, J. Eisert, M. B. Plenio, and I. A. Walmsley, Recursive quantum detector tomography, New J. Phys. 14, 115005 (2012). 27. G. Brida, L. Ciavarella, I. P. Degiovanni, M. Genovese, L. Lolli, M. G. Mingolla, F. Piacentini, M. Rajteri, E. Taralli, and M. G. A. Paris, Quantum characterization of superconducting photon counters, New J. Phys. 14, 085001 (2012). 28. J. Řeháček, D. Mogilevtsev, and Z. Hradil, Operational Tomography: Fitting of Data Patterns, Phys. Rev. Lett. 105, 010402 (2010). 29. D. Mogilevtsev, A. Ignatenko, A. Maloshtan, B. Stoklasa, J. Rehacek, and Z. Hradil, Data pattern tomography: Reconstruction with an unknown apparatus, New J. Phys. 15, 025038 (2013). 30. M. Cooper, M. Karpinski, and B. J. Smith, Local mapping of detector response for reliable quantum state estimation, Nat. Commun. 5, 4332 (2014). 31. G. Harder, C. Silberhorn, J. Rehacek, Z. Hradil, L. Motka, B. Stoklasa, and L. L. Sánchez-Soto, Time-multiplexed measurements of nonclassical light at telecom wavelengths, Phys. Rev. A 90, 042105 (2014). 32. M. Altorio, M. G. Genoni, F. Somma, and M. Barbieri, Metrology with Unknown Detectors, Phys. Rev. Lett. 116, 100802 (2016). 33. G. Harder, V. Ansari, B. Brecht, T. Dirmeier, C. Marquardt, and C. Silberhorn, An optimized photon pair source for quantum circuits, Opt. Express 21, 13975 (2013). 34. See Supplemental Material at for a brief description of the fitting of data pattern and the related partial tomography.
dc.journal.titlePhysical review letters
dc.publisherAmerican Physical Society
dc.relation.projectIDQCUMbER (665148)
dc.relation.projectIDPRF 2016- 005
dc.rights.accessRightsopen access
dc.subject.keywordQuamtum state
dc.subject.ucmÓptica (Física)
dc.subject.unesco2209.19 Óptica Física
dc.titleLocal Sampling of the Wigner Function at Telecom Wavelength with Loss-Tolerant Detection of Photon Statistics
dc.typejournal article
Original bundle
Now showing 1 - 1 of 1
Thumbnail Image
SánchezSotoLL 08 LIBRE.pdf
526.83 KB
Adobe Portable Document Format