Geometrical entropies. The extended entropy
Loading...
Official URL
Full text at PDC
Publication date
2000
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Springer
Citation
Abstract
By taking into account a geometrical interpretation of the measurement process [1, 2], we define a set of measures of uncertainty. These measures will be called geometrical entropies. The amount of information is defined by considering the metric structure in the probability space. Shannon-von Neumann entropy is a particular element of this set. We show the incompatibility between this element and the concept of variance as a measure of the statistical fluctuations. When the probability space is endowed with the generalized statistical distance proposed in reference [3], we obtain the extended entropy. This element, which belongs to the set of geometrical entropies, is fully compatible with the concept of variance. Shannon-von Neumann entropy is recovered as an approximation of the extended entropy. The behavior of both entropies is compared in the case of a particle in a square-well potential.
Description
Received 4 November 1999