Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA Disculpen las molestias.
 

Schwarzenberger bundles of arbitrary rank on the projective space

dc.contributor.authorArrondo Esteban, Enrique
dc.date.accessioned2023-06-20T00:08:59Z
dc.date.available2023-06-20T00:08:59Z
dc.date.issued2010
dc.description.abstractWe introduce a generalized notion of Schwarzenberger bundle on the projective space. Associated to this more general definition, we give an ad hoc notion of jumping subspaces of a Steiner bundle on P(n) (which in rank n coincides with the notion of unstable hyperplane introduced by Valles, Ancona and Ottaviani). For the set of jumping hyperplanes, we find a sharp bound for its dimension. We also classify those Steiner bundles whose set of jumping hyperplanes have maximal dimension and prove that they are generalized Schwarzenberger bundles.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Educación (España)
dc.description.sponsorshipUniversidad Complutense de Madrid
dc.description.sponsorshipComunidad de Madrid
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/14753
dc.identifier.doihttp://dx.doi.org10.1112/jlms/jdq056
dc.identifier.issn0024-6107
dc.identifier.officialurlhttp://jlms.oxfordjournals.org/content/82/3/697.full.pdf+html
dc.identifier.urihttps://hdl.handle.net/20.500.14352/42086
dc.issue.numberPart 3
dc.journal.titleJournal of the London Mathematical Society
dc.language.isoeng
dc.page.final716
dc.page.initial697
dc.publisherOxford University Press
dc.relation.projectIDMTM2006-04785
dc.relation.projectIDCCG07-UCM/ESP-3026
dc.rights.accessRightsrestricted access
dc.subject.cdu512.7
dc.subject.keywordVector-bundles
dc.subject.keywordHyperplanes
dc.subject.keywordCurves
dc.subject.ucmGeometria algebraica
dc.subject.unesco1201.01 Geometría Algebraica
dc.titleSchwarzenberger bundles of arbitrary rank on the projective space
dc.typejournal article
dc.volume.number82
dcterms.references1. V. Ancona and G. Ottaviani, ‘Unstable hyperplanes for Steiner bundles and multidimensional matrices’, Adv. Geom. 1 (2001) 165–192. 2. A. Beauville, ‘Vector bundles and theta functions on curves of genus 2 and 3’, Amer. J. Math. 128 (2006) 607–618. 3. I. Dolgachev and M. Kapranov, ‘Arrangements of hyperplanes and vector bundles on Pn’, Duke Math. J. 71 (1993) 633–664. 4. J. Harris, Algebraic geometry: a first course (Springer, Berlin, 1992). 5. R. Re, ‘Multiplication of sections and Clifford bounds for stable vector bundles on curves’, Comm. Algebra 26 (1998) 1931–1944. 6. R. L. E. Schwarzenberger, ‘Vector bundles on the projective plane’, Proc. London Math. Soc. 11 (1961) 623–640. 7. J. C. Sierra, ‘A degree bound for globally generated vector bundles’, Math. Z. 262 (2009) 517–525. 8. H. Soares, ‘Steiner vector bundles on algebraic varieties’, PhD Thesis, Barcelona, 2008. 9. J. Vall`es, ‘Nombre maximal d’hyperplans instables pour un fibr´e de Steiner’, Math. Z. 233 (2000) 507–514. 10. J. Vall`es, ‘Fibr´es de Schwarzenberger et fibr´es logarithmiques g´en´eralis´es’, Preprint, 2008, Math. Z., arXiv:0810.1603v2 [math.AG], http://www.springerlink.com/content/417321652k337643/fulltext.pdf.
dspace.entity.typePublication
relation.isAuthorOfPublication5bd88a9c-e3d0-434a-a675-3221b2fde0e4
relation.isAuthorOfPublication.latestForDiscovery5bd88a9c-e3d0-434a-a675-3221b2fde0e4

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
03.pdf
Size:
274.82 KB
Format:
Adobe Portable Document Format

Collections