Publication:
Spinning strings in AdS_(3) × S^(3) with NS–NS flux

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2014
Authors
Nieto, Juan Miguel
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
The sigma model describing closed strings rotating in AdS_(3) × S^(3) is known to reduce to the one-dimensional Neumann–Rosochatius integrable system. In this article we show that closed spinning strings in AdS_(3) × S^(3) × T ^(4) in the presence of NS–NS three-form flux can be described by an extension of the Neumann–Rosochatius system. We consider closed strings rotating with one spin in AdS_(3) and two different angular momenta in S^(3). For a class of solutions with constant radii we find the dependence of the classical energy on the spin and the angular momenta as an expansion in the square of the ’t Hooft coupling of the theory.
Description
© 2014 The Authors. Published by Elsevier B.V. The work of R.H. is supported by MICINN through a Ramón y Cajal contract and grant FPA2011-24568, and by BSCH-UCM through grant GR58/08-910770. J.M.N. wishes to thank the Instituto de Física Teórica UAM-CSIC for kind hospitality during this work.
Unesco subjects
Keywords
Citation
[1] J.A. Minahan, K. Zarembo, The Bethe ansatz for Ɲ = 4 superYang–Mills, J. High Energy Phys. 0303 (2003) 013, arXiv:hep-th/0212208. [2] N. Beisert, M. Staudacher, The Ɲ = 4 SYM integrable super spin chain, Nucl. Phys. B 670 (2003) 439, arXiv:hepth/0307042. [3] N. Beisert, C. Kristjansen, M. Staudacher, The Dilatation operator of conformal Ɲ = 4 superYang–Mills theory, Nucl. Phys. B 664 (2003) 131, arXiv:hep-th/0303060. [4] I. Bena, J. Polchinski, R. Roiban, Hidden symmetries of the AdS5 ×S^(5) superstring, Phys. Rev. D 69 (2004) 046002, arXiv:hep-th/0305116. [5] G. Arutyunov, S. Frolov, M. Staudacher, Bethe ansatz for quantum strings, J. High Energy Phys. 0410 (2004) 016, arXiv:hep-th/0406256. [6] J.R. David, B. Sahoo, Giant magnons in the D1–D5 system, J. High Energy Phys. 0807 (2008) 033, arXiv:0804.3267 [hep-th]; J.R. David, B. Sahoo, S-matrix for magnons in the D1–D5 system, J. High Energy Phys. 1010 (2010) 112, arXiv:1005.0501 [hep-th]. [7] A. Babichenko, B. Stefański Jr., K. Zarembo, Integrability and the AdS-(3)/CFT_(2) correspondence, J. High Energy Phys. 1003 (2010) 058, arXiv:0912.1723 [hep-th]. [8] K. Zarembo, Strings on semisymmetric superspaces, J. High Energy Phys. 1005 (2010) 002, arXiv:1003.0465 [hepth]; K. Zarembo, Algebraic curves for integrable string backgrounds, arXiv:1005.1342 [hep-th]. [9] O. Ohlsson Sax, B. Stefański Jr., Integrability, spin-chains and the AdS_(3)/CFT_(2) correspondence, J. High Energy Phys. 1108 (2011) 029, arXiv:1106.2558 [hep-th]. [10] N. Rughoonauth, P. Sundin, L. Wulff, Near BMN dynamics of the AdS_(3) × S^(3) × S^(3) × S^(1) superstring, J. High Energy Phys. 1207 (2012) 159, arXiv:1204.4742 [hep-th]. http://www.sciencedirect.com/science/articl [11] O. Ohlsson Sax, B. Stefański Jr., A. Torrielli, On the massless modes of the AdS_(3)/CFT_(2) integrable systems, J. High Energy Phys. 1303 (2013) 109, arXiv:1211.1952 [hep-th]. [12] C. Ahn, D. Bombardelli, Exact S-matrices for AdS_(3)/CFT_(2), Int. J. Mod. Phys. A 28 (2013) 1350168, arXiv: 1211.4512 [hep-th]. [13] R. Borsato, O. Ohlsson Sax, A. Sfondrini, A dynamic su(1|1)^(2) S-matrix for AdS_(3)/CFT_(2), J. High Energy Phys. 1304 (2013) 113, arXiv:1211.5119 [hep-th]. [14] M. Beccaria, F. Levkovich-Maslyuk, G. Macorini, A.A. Tseytlin, Quantum corrections to spinning superstrings in AdS_(3) × S^(3) × M^(4): determining the dressing phase, J. High Energy Phys. 1304 (2013) 006, arXiv:1211.6090 [hep-th]. [15] R. Borsato, O. Ohlsson Sax, A. Sfondrini, All-loop Bethe ansatz equations for AdS_(3)/CFT_(2), J. High Energy Phys. 1304 (2013) 116, arXiv:1212.0505 [hep-th]. [16] M. Beccaria, G. Macorini, Quantum corrections to short folded superstring in AdS_(3) × S^(3) × M^(4), J. High Energy Phys. 1303 (2013) 040, arXiv:1212.5672 [hep-th]. [17] P. Sundin, L. Wulff, Worldsheet scattering in AdS_(3)/CFT_(2), J. High Energy Phys. 1307 (2013) 007, arXiv:1302.5349 [hep-th]. [18] R. Borsato, O. Ohlsson Sax, A. Sfondrini, B. Stefański Jr., A. Torrielli, The all-loop integrable spin-chain for strings on AdS_(3) × S^(3) × T^(4): the massive sector, J. High Energy Phys. 1308 (2013) 043, arXiv:1303.5995 [hep-th]. [19] R. Borsato, O. Ohlsson Sax, A. Sfondrini, B. Stefański Jr., A. Torrielli, Dressing phases of AdS_(3)/CFT_(2), Phys. Rev. D 88 (2013) 066004, arXiv:1306.2512 [hep-th]. [20] M.C. Abbott, The AdS_(3) × S^(3) × S^(3) × S^(1) Hernández López phases: a semiclassical derivation, J. Phys. A 46 (2013) 445401, arXiv:1306.5106 [hep-th]. [21] T. Lloyd, B. Stefański Jr., AdS_(3)/CFT_(2), finite-gap equations and massless modes, J. High Energy Phys. 1404 (2014) 179, arXiv:1312.3268 [hep-th]. [22] P. Sundin, Worldsheet two- and four-point functions at one loop in AdS_(3)/CFT_(2), Phys. Lett. B 733 (2014) 134, arXiv:1403.1449 [hep-th]. [23] R. Borsato, O. Ohlsson Sax, A. Sfondrini, B. Stefański Jr., All-loop worldsheet S matrix for AdS_(3) × S^(3) × T^(4), arXiv:1403.4543 [hep-th]. [24] R. Borsato, O. Ohlsson Sax, A. Sfondrini, B. Stefański Jr., The complete AdS_(3) × S^(3) × T^(4) worldsheet S-matrix, arXiv:1406.0453 [hep-th]. [25] A. Sfondrini, Towards integrability for AdS_(3)/CFT_(2), arXiv:1406.2971 [hep-th]. [26] A. Cagnazzo, K. Zarembo, B-field in AdS_(3)/CFT_(2) correspondence and integrability, J. High Energy Phys. 1211 (2012) 133, arXiv:1209.4049 [hep-th]; A. Cagnazzo, K. Zarembo, J. High Energy Phys. 1304 (2013) 003 (Erratum). [27] B. Hoare, A.A. Tseytlin, On string theory on AdS_(3) × S^(3) × T^(4) with mixed 3-form flux: tree-level S-matrix, Nucl. Phys. B 873 (2013) 682, arXiv:1303.1037 [hep-th]; B. Hoare, A.A. Tseytlin, Massive S-matrix of AdS_(3) × S^(3) × T^(4) superstring theory with mixed 3-form flux, Nucl. Phys. B 873 (2013) 395, arXiv:1304.4099 [hep-th]. [28] B. Hoare, A. Stepanchuk, A.A. Tseytlin, Giant magnon solution and dispersion relation in string theory in AdS_(3) × S^(3) × T^(4) with mixed flux, Nucl. Phys. B 879 (2014) 318, arXiv:1311.1794 [hep-th]. [29] C. Ahn, P. Bozhilov, String solutions in AdS_(3) × S^(3) × T^(4) with NS–NS B-field, arXiv:1404.7644 [hep-th]. [30] J.R. David, A. Sadhukhan, Spinning strings and minimal surfaces in AdS_(3) with mixed 3-form fluxes, arXiv: 1405.2687 [hep-th]. [31] A. Banerjee, K.L. Panigrahi, P.M. Pradhan, Spiky strings on AdS_(3) ×S^(3) with NS–NS flux, arXiv:1405.5497 [hep-th]. [32] A. Babichenko, A. Dekel, O. Ohlsson Sax, Finite-gap equations for strings on AdS_(3) × S^(3) × T^(4) with mixed 3-form flux, arXiv:1405.6087 [hep-th]. [33] G. Arutyunov, S. Frolov, J. Russo, A.A. Tseytlin, Spinning strings in AdS_(5) × S^(5) and integrable systems, Nucl. Phys. B 671 (2003) 3, arXiv:hep-th/0307191; G. Arutyunov, J. Russo, A.A. Tseytlin, Spinning strings in AdS_(5) × S^(5): new integrable system relations, Phys. Rev. D 69 (2004) 086009, arXiv:hep-th/0311004. [34] S.S. Gubser, I.R. Klebanov, A.M. Polyakov, A semiclassical limit of the gauge/string correspondence, Nucl. Phys. B 636 (2002) 99, arXiv:hep-th/0204051. [35] J.A. Minahan, Circular semiclassical string solutions on AdS_(5) × S^(5), Nucl. Phys. B 648 (2003) 203, arXiv:hepth/0209047. [36] S. Frolov, A.A. Tseytlin, Quantizing three spin string solution in AdS_(5) × S^(5), J. High Energy Phys. 0307 (2003) 016, arXiv:hep-th/0306130. [37] F. Delduc, M. Magro, B. Vicedo, An integrable deformation of the AdS_(5) × S^(5) superstring action, Phys. Rev. Lett. 112 (5) (2014) 051601, arXiv:1309.5850 [hep-th]. [38] G. Arutyunov, D. Medina Rincón, Deformed Neumann model from spinning strings on (AdS_(5) × S^(5))η, arXiv: 1406.2536 [hep-th].
Collections