Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

A machine learning research template for binary classification problems and shapley values integration

Loading...
Thumbnail Image

Full text at PDC

Publication date

2021

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier
Citations
Google Scholar

Citation

Abstract

This paper documents published code which can help facilitate researchers with binary classification problems and interpret the results from a number of Machine Learning models. The original paper was published in Expert Systems with Applications and this paper documents the code and work-flow with a special interest being paid to Shapley values as a means to interpret Machine Learning predictions. The Machine Learning models used are, Naive Bayes, Logistic Regression, Random Forest, adaBoost, Classification Tree, Light GBM and XGBoost.

Research Projects

Organizational Units

Journal Issue

Description

CRUE-CSIC (Acuerdos Transformativos 2021)

Keywords

Collections