Haantjes Structures for the Jacobi-Calogero Model and the Benenti Systems.

dc.contributor.authorTondo, Giorgio
dc.contributor.authorTempesta, Piergiulio
dc.date.accessioned2023-06-18T06:51:32Z
dc.date.available2023-06-18T06:51:32Z
dc.date.issued2016
dc.description© NATL ACAD SCI UKRAINE, INST MATH. The work of P.T. has been partly supported by the research project FIS2015-63966, MINECO, Spain and partly by ICMAT Severo Ochoa project SEV-2015-0554 (MINECO). G.T. acknowledges the financial support of the research project PRIN 2010-11 \Geometric and analytic theory of Hamiltonian systems in finite and infinite dimensions". Moreover, he thanks G. Rastelli for interesting discussions about the Jacobi{Calogero model. We also thank the anonymous referees for a careful reading of the manuscript and for several useful suggestions.
dc.description.abstractIn the context of the theory of symplectic-Haantjes manifolds, we construct the Haantjes structures of generalized Stackel systems and, as a particular case, of the quasi-bi-Hamiltonian systems. As an application, we recover the Haantjes manifolds for the rational Calogero model with three particles and for the Benenti systems.
dc.description.departmentDepto. de Física Teórica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Economía y Competitividad (MINECO)
dc.description.sponsorshipPrograma de Excelencia Severo Ochoa (MINECO)
dc.description.sponsorshipInstituto de Ciencias Matemáticas (ICMAT)
dc.description.sponsorshipProgetti di ricerca di Rilevante Interesse Nazionale (PRIN), Italia
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/37116
dc.identifier.citation1. Arnold V.I., Kozlov V.V., Neishtadt A.I., Mathematical aspects of classical and celestial mechanics, Springer-Verlag, Berlin, 1997. 2. Benenti S., Separability structures on Riemannian manifolds, in Differential Geometrical Methods in Mathematical Physics (Proc. Conf., Aix-en-Provence/Salamanca, 1979), Lecture Notes in Math., Vol. 836, Springer, Berlin, 1980, 512-538. 3. Benenti S., Inertia tensors and Stäckel systems in the Euclidean spaces, Rend. Sem. Mat. Univ. Politec. Torino 50 (1992), 315-341. 4. Benenti S., Orthogonal separable dynamical systems, in Differential Geometry and its Applications (Opava, 1992), Math. Publ., Vol. 1, Silesian Univ. Opava, Opava, 1993, 163-184. 5. Benenti S., Chanu C., Rastelli G., The super-separability of the three-body inverse-square Calogero system, J. Math. Phys. 41 (2000), 4654-4678. 6. Benenti S., Chanu C., Rastelli G., Remarks on the connection between the additive separation of the Hamilton-Jacobi equation and the multiplicative separation of the Schrödinger equation. I. The completeness and Robertson conditions, J. Math. Phys. 43 (2002), 5183-5222. 7. Błaszak M., Multi-Hamiltonian theory of dynamical systems, Texts and Monographs in Physics, Springer-Verlag, Berlin, 1998. 8. Bogoyavlenskij O.I., Necessary conditions for existence of non-degenerate Hamiltonian structures, Comm. Math. Phys. 182 (1996), 253-289. 9. Bogoyavlenskij O.I., General algebraic identities for the Nijenhuis and Haantjes tensors, Izv. Math. 68 (2004), 71-84. 10. Calogero F., Solution of a three-body problem in one dimension, J. Math. Phys. 10 (1969), 2191-2196. 11. Calogero F., Calogero-Moser system, Scholarpedia 3 (2008), 7216. 12. Calogero F., Isochronous systems, Oxford University Press, Oxford, 2008. 13. Falqui G., Magri F., Tondo G., Reduction of bi-Hamiltonian systems and the separation of variables: an example from the Boussinesq hierarchy, Theoret. Math. Phys. 122 (2000), 176-192, solv-int/9906009. 14. Falqui G., Pedroni M., Separation of variables for bi-Hamiltonian systems, Math. Phys. Anal. Geom. 6 (2003), 139-179, nlin.SI/0204029. 15. Ferapontov E.V., Marshall D.G., Differential-geometric approach to the integrability of hydrodynamic chains: the Haantjes tensor, Math. Ann. 339 (2007), 61-99, nlin.SI/0505013. 16. Frölicher A., Nijenhuis A., Theory of vector-valued differential forms. I. Derivations of the graded ring of differential forms, Indag. Math. 59 (1956), 338-359. 17. Fuhrmann P.A., A polynomial approach to linear algebra, Universitext, Springer-Verlag, New York, 1996. 18. Haantjes J., On Xm forming sets of eigenvectors, Indag. Math. 58 (1955), 158-162. 19. Ibort A., Magri F., Marmo G., Bihamiltonian structures and Stäckel separability, J. Geom. Phys. 33 (2000), 210-228. 20. Jacobi C.G.J., Problema trium corporis mutuis attractionibus cubic distantiarium inverse proportionalibus recta linea se moventium, in Gesammelte Werke, Vol. 4, Chelsea, New York, 1969, 533-539. 21. Magri F., A simple model of the integrable Hamiltonian equation, J. Math. Phys. 19 (1978), 1156-1162. 22. Magri F., A geometrical approach to the nonlinear solvable equations, in Nonlinear Evolution Equations and Dynamical Systems (Proc. Meeting, Univ. Lecce, Lecce, 1979), Lecture Notes in Phys., Vol. 120, Springer, Berlin-New York, 1980, 233-263. 23. Magri F., Lenard chains for classical integrable systems, Theoret. and Math. Phys. 137 (2003), 1716-1722. 24. Magri F., Recursion operators and Frobenius manifolds, SIGMA 8 (2012), 076, 7 pages, arXiv:1210.5320. 25. Magri F., Haantjes manifolds, J. Phys. Conf. Ser. 482 (2014), 012028, 11 pages. 26. Magri F., Marsico T., Some developments of the concept of Poisson manifolds in the sense of A. Lichnerowicz, in Gravitation, Electromagnetism and Geometric Structures, Editor G. Ferrarese, Pitagora editrice, Bologna, 1996, 207-222. 27. Magri F., Morosi C., A geometrical characterization of integrable Hamiltonian systems through the theory of Poisson-Nijenhuis manifolds, Quaderni del Dipartimento di Matematica, Università di Milano, 1984. 28. Miller Jr. W., Post S., Winternitz P., Classical and quantum superintegrability with applications, J. Phys. A: Math. Theor. 46 (2013), 423001, 97 pages, arXiv:1309.2694. 29. Morosi C., Tondo G., Quasi-bi-Hamiltonian systems and separability, J. Phys. A: Math. Gen. 30 (1997), 2799-2806, solv-int/9702006. 30. Morosi C., Tondo G., On a class of dynamical systems both quasi-bi-Hamiltonian and bi-Hamiltonian, Phys. Lett. A 247 (1998), 59-64, solv-int/9811007. 31. Morosi C., Tondo G., The quasi-bi-Hamiltonian formulation of the Lagrange top, J. Phys. A: Math. Gen. 35 (2002), 1741-1750, nlin.SI/0201028. 32. Morosi C., Tondo G., Separation of variables in multi-Hamiltonian systems: an application to the Lagrange top, Theoret. and Math. Phys. 137 (2003), 1550-1560, nlin.SI/0305007. 33. Nijenhuis A., Xn−1-forming sets of eigenvectors, Indag. Math. 54 (1951), 200-212. 34. Nijenhuis A., Jacobi-type identities for bilinear differential concomitants of certain tensor fields. I, Indag. Math. 17 (1955), 390-397. 35. Nijenhuis A., Jacobi-type identities for bilinear differential concomitants of certain tensor fields. II, Indag. Math. 17 (1955), 398-403. 36. Pars L.A., A treatise on analytical dynamics, Heinemann Educational Books Ltd., London, 1965. 37. Perelomov A.M., Integrable systems of classical mechanics and Lie algebras, Birkhäuser Verlag, Basel, 1990. 38. Tempesta P., Tondo G., Generalized Lenard chains, separation of variables, and superintegrability, Phys. Rev. E 85 (2012), 046602, 11 pages, arXiv:1205.6937. 39. Tempesta P., Tondo G., Haantjes manifolds of classical integrable systems, arXiv:1405.5118. 40. Tempesta P., Winternitz P., Harnad J., Miller W., Pogosyan G., Rodriguez M. (Editors), Superintegrability in classical and quantum systems, CRM Proceedings and Lecture Notes, Vol. 37, American Mathematical Society, Providence, RI, 2004. 41. Tondo G., On the integrability of stationary and restricted flows of the KdV hierarchy, J. Phys. A: Math. Gen. 28 (1995), 5097-5115, solv-int/9507004. 42. Tondo G., Generalized Lenard chains and multi-separability of the Smorodinsky-Winternitz system, J. Phys. Conf. Ser. 482 (2014), 012042, 10 pages. 43. Tondo G., Morosi C., Bi-Hamiltonian manifolds, quasi-bi-Hamiltonian systems and separation variables, Rep. Math. Phys. 44 (1999), 255-266, solv-int/9811008. 44. Tsiganov A.V., On bi-integrable natural Hamiltonian systems on Riemannian manifolds, J. Nonlinear Math. Phys. 18 (2011), 245-268, arXiv:1006.3914.
dc.identifier.doi10.3842/SIGMA.2016.023
dc.identifier.issn1815-0659
dc.identifier.officialurlhttp://dx.doi.org/10.3842/SIGMA.2016.023
dc.identifier.relatedurlhttp://www.emis.de/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/24421
dc.journal.titleSymmetry integrability and geometry: methods and applications (SIGMA)
dc.language.isoeng
dc.publisherNATL ACAD SCI UKRAINE, INST MATH
dc.relation.projectIDFIS2015-63966
dc.relation.projectIDSEV-2015-0554
dc.relation.projectIDPRIN 2010-11
dc.rights.accessRightsopen access
dc.subject.cdu51-73
dc.subject.keywordHaantjes tensor
dc.subject.keywordSymplectic-Haantjes manifolds
dc.subject.keywordStackel systems
dc.subject.keywordQuasi-bi-Hamiltonian systems
dc.subject.keywordBenenti systems.
dc.subject.ucmFísica-Modelos matemáticos
dc.subject.ucmFísica matemática
dc.titleHaantjes Structures for the Jacobi-Calogero Model and the Benenti Systems.
dc.typejournal article
dc.volume.number12
dspace.entity.typePublication
relation.isAuthorOfPublication46e9a666-a5cf-44c3-8726-7cbe2c61bd1a
relation.isAuthorOfPublication.latestForDiscovery46e9a666-a5cf-44c3-8726-7cbe2c61bd1a
Download
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
tempesta24libre.pdf
Size:
463.34 KB
Format:
Adobe Portable Document Format
Collections