Fast estimation methods for time series models in state-space form

dc.contributor.authorGarcía Hiernaux, Alfredo Alejandro
dc.contributor.authorCasals Carro, José
dc.contributor.authorJerez Méndez, Miguel
dc.date.accessioned2023-06-20T16:39:26Z
dc.date.available2023-06-20T16:39:26Z
dc.date.issued2005
dc.description.abstractWe propose two fast, stable and consistent methods to estimate time series models expressed in their equivalent state-space form. They are useful both, to obtain adequate initial conditions for a maximum-likelihood iteration, or to provide final estimates when maximum-likelihood is considered inadequate or costly. The state-space foundation of these procedures implies that they can estimate any linear fixed-coefficients model, such as ARIMA, VARMAX or structural time series models. The computational and finitesample performance of both methods is very good, as a simulation exercise shows.
dc.description.facultyFac. de Ciencias Económicas y Empresariales
dc.description.facultyInstituto Complutense de Análisis Económico (ICAE)
dc.description.refereedFALSE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/7881
dc.identifier.relatedurlhttps://www.ucm.es/icae
dc.identifier.urihttps://hdl.handle.net/20.500.14352/56624
dc.issue.number04
dc.language.isoeng
dc.page.total30
dc.publication.placeMadrid
dc.publisherInstituto Complutense de Análisis Económico. Universidad Complutense de Madrid
dc.relation.ispartofseriesDocumentos de Trabajo del Instituto Complutense de Análisis Económico (ICAE)
dc.rights.accessRightsopen access
dc.subject.keywordState-space models
dc.subject.keywordSubspace methods
dc.subject.keywordKalman Filter
dc.subject.keywordSystem identification
dc.subject.ucmEconometría (Economía)
dc.subject.unesco5302 Econometría
dc.titleFast estimation methods for time series models in state-space form
dc.typetechnical report
dc.volume.number2005
dcterms.referencesAnderson, B. D. O. and Moore, J. B. (1979). Optimal Filtering. Englewood Cliffs (N.J.): Prentice Hall. Ansley, C. F. and Newbold, P. (1980). Finite sample properties of estimators for autorregresion moving average models. Journal of Econometrics, 13:159–183. Aoki, M. (1990). State Space Modelling of Time Series. Springer Verlag, New York. Casals, J., Sotoca, S., and Jerez, M. (1999). A fast stable method to compute the likelihood of time invariant state space models. Economics Letters, 65(3):329–337. Chui, N. L. C. (1997). Subspace Methods and Informative Experiments for System Identification. PhD thesis, Pembroke College Cambridge. Dufour, J. M. and Pelletier, D. (2004). Linear estimation of weak varma models with macroeconomic applications. Technical report, Centre Interuniversitaire de Recherche en Economie Quantitative (CIREQ), Universit´e de Montr´eal, CANADA. Favoreel, W., De Moor, B., and Van Overschee, P. (2000). Subspace state space system identification for industrial processes. Journal of Process Control, 10:149–155. Flores, R. and Serrano, G. (2002). A generalized least squares estimation method for varma models. Statistics, 36(4):303–316. Francq, C. and Zako¨ıan, J. M. (2000). Estimating weak garch representations. Econometric Theory, 16:692–728. Harvey, A. C. (1989). Forecasting, structural time series models and th Kalman Filter. Cambridge University Press. Harvey, A. C., Ruiz, E., and Shepard, N. (1994). Multivariate stochastic variance models. Review of Economic Studies, 61:247–264. Harvey, A. C. and Shepard, N. (1993). Structural Time Series Models, volume 11 of Handbook of Statistics. Elsevier Science Publishers B.V. Ho, B. and Kalman, R. (1966). Effective construction of linear state-variable models from input-output functions. Regelungstechnik, 14:545–548. Koreisha, S. G. and Pukkila, T. H. (1989). Fast linear estimation methods for vector autorregresive moving average models. Journal of Time Series Analysis, 10:325–339. Koreisha, S. G. and Pukkila, T. H. (1990). A generalized least-squares approach for estimation of autorregresive moving-average models. Journal of Time Series Analysis, 11:139–151. Ljung, L. (1999). System Identification, Theory for the User. PTR Prentice Hall. Lütkepohl, H. and Poskitt, D. S. (1996). Specification of echelon form varma models. Journal of Business and Economic Statistics, 14(1):69–79. Peternell, K., Sherrer, W., and Deistler, M. (1996). Statistical analysis of novel subspace identification methods. Signal Processing, 52:161–177. Spliid, H. (1983). A fast estimation method for the vector autoregressive moving average model with exogenous variables. Journal of the American Statistical Association, 78(384):843–849. Terceiro, J. (1990). Estimation of Dynamics Econometric Models with Errors in Variables. Springer-Verlag, Berlin. Van Overschee, P. and De Moor, B. (1996). Subspace Identification for Linear Systems: Theory, Implementation, Applications. Kluwer Academic, Dordrecht, The Netherlands. Viberg, M. (1995). Subspace-based methods for the identification of the linear time-invariant systems. Automatica, 31(12):1835–1852.
dspace.entity.typePublication
relation.isAuthorOfPublicationda39222d-0086-4c3a-9421-032f49579d94
relation.isAuthorOfPublicationfdb804b2-ac97-4a0a-bd74-9414c4b86042
relation.isAuthorOfPublication.latestForDiscoveryfdb804b2-ac97-4a0a-bd74-9414c4b86042

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
0504.pdf
Size:
216.24 KB
Format:
Adobe Portable Document Format